Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.05097
Cited By
Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks
11 April 2021
Louis Bethune
Thibaut Boissin
M. Serrurier
Franck Mamalet
Corentin Friedrich
Alberto González Sanz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks"
9 / 9 papers shown
Title
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
42
0
0
07 Jun 2024
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
34
9
0
16 May 2023
Lipschitz-bounded 1D convolutional neural networks using the Cayley transform and the controllability Gramian
Patricia Pauli
Ruigang Wang
I. Manchester
Frank Allgöwer
32
8
0
20 Mar 2023
Convolutional Neural Networks as 2-D systems
Dennis Gramlich
Patricia Pauli
C. Scherer
Frank Allgöwer
C. Ebenbauer
3DV
36
8
0
06 Mar 2023
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
38
54
0
05 Aug 2021
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Fartash Faghri
Sven Gowal
C. N. Vasconcelos
David J. Fleet
Fabian Pedregosa
Nicolas Le Roux
AAML
195
7
0
17 Feb 2021
Fast and accurate optimization on the orthogonal manifold without retraction
Pierre Ablin
Gabriel Peyré
59
27
0
15 Feb 2021
Learning Unitary Operators with Help From u(n)
Stephanie L. Hyland
Gunnar Rätsch
97
41
0
17 Jul 2016
1