ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04975
  4. Cited By
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

11 April 2021
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning"

27 / 27 papers shown
Title
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
97
2
0
27 Nov 2024
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
47
8
0
05 Jun 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
37
0
0
27 May 2024
Structured Inverse-Free Natural Gradient: Memory-Efficient &
  Numerically-Stable KFAC
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard Turner
Alireza Makhzani
22
3
0
09 Dec 2023
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
92
1
0
17 Jul 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
27
1
0
08 Jun 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Fixing Overconfidence in Dynamic Neural Networks
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
37
16
0
13 Feb 2023
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
15
9
0
02 Aug 2022
Challenges and Pitfalls of Bayesian Unlearning
Challenges and Pitfalls of Bayesian Unlearning
Ambrish Rawat
James Requeima
W. Bruinsma
Richard Turner
BDL
MU
44
5
0
07 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
35
29
0
06 Jul 2022
Laplacian Autoencoders for Learning Stochastic Representations
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
35
10
0
30 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
27
28
0
17 Jun 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
40
23
0
28 Jan 2022
Behavioral Experiments for Understanding Catastrophic Forgetting
Behavioral Experiments for Understanding Catastrophic Forgetting
Samuel J. Bell
Neil D. Lawrence
27
4
0
20 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
34
9
0
08 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
55
288
0
28 Jun 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
51
93
0
22 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
26
37
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
284
2,889
0
15 Sep 2016
1