ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.04179
  4. Cited By
X2CT-FLOW: Maximum a posteriori reconstruction using a progressive
  flow-based deep generative model for ultra sparse-view computed tomography in
  ultra low-dose protocols

X2CT-FLOW: Maximum a posteriori reconstruction using a progressive flow-based deep generative model for ultra sparse-view computed tomography in ultra low-dose protocols

9 April 2021
Hisaichi Shibata
S. Hanaoka
Y. Nomura
Takahiro Nakao
T. Takenaga
Naoto Hayashi
O. Abe
    MedIm
ArXivPDFHTML

Papers citing "X2CT-FLOW: Maximum a posteriori reconstruction using a progressive flow-based deep generative model for ultra sparse-view computed tomography in ultra low-dose protocols"

1 / 1 papers shown
Title
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
  Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon
Alexandru Damian
Shijia Hu
Nikhil Ravi
Cynthia Rudin
OOD
DiffM
194
541
0
08 Mar 2020
1