ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.02939
  4. Cited By
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation

7 April 2021
Shu Kong
Deva Ramanan
ArXivPDFHTML

Papers citing "OpenGAN: Open-Set Recognition via Open Data Generation"

17 / 117 papers shown
Title
Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From
  Learned Pairwise Affinity
Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity
Weiyao Wang
Matt Feiszli
Heng Wang
Jitendra Malik
Du Tran
ISeg
37
48
0
12 Apr 2022
Expanding Low-Density Latent Regions for Open-Set Object Detection
Expanding Low-Density Latent Regions for Open-Set Object Detection
Jiaming Han
Yuqiang Ren
Jian Ding
Xingjia Pan
Ke Yan
Guisong Xia
ObjD
45
58
0
28 Mar 2022
Long-Tailed Recognition via Weight Balancing
Long-Tailed Recognition via Weight Balancing
Shaden Alshammari
Yu-Xiong Wang
Deva Ramanan
Shu Kong
MQ
30
141
0
27 Mar 2022
GOSS: Towards Generalized Open-set Semantic Segmentation
GOSS: Towards Generalized Open-set Semantic Segmentation
Jie Hong
Weihong Li
Junlin Han
Jiyang Zheng
Pengfei Fang
Mehrtash Harandi
L. Petersson
VLM
45
19
0
23 Mar 2022
OpenTAL: Towards Open Set Temporal Action Localization
OpenTAL: Towards Open Set Temporal Action Localization
Wentao Bao
Qi Yu
Yu Kong
EDL
42
26
0
10 Mar 2022
UQGAN: A Unified Model for Uncertainty Quantification of Deep
  Classifiers trained via Conditional GANs
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
Philipp Oberdiek
G. Fink
Matthias Rottmann
OODD
53
15
0
31 Jan 2022
Generalized Category Discovery
Generalized Category Discovery
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
45
190
0
07 Jan 2022
Revisiting Open World Object Detection
Revisiting Open World Object Detection
Xiaowei Zhao
Xianglong Liu
Yifan Shen
Yixuan Qiao
Yuqing Ma
Duorui Wang
76
49
0
03 Jan 2022
Dense Out-of-Distribution Detection by Robust Learning on Synthetic
  Negative Data
Dense Out-of-Distribution Detection by Robust Learning on Synthetic Negative Data
Matej Grcić
Petra Bevandić
Zoran Kalafatić
Sinivsa vSegvić
43
10
0
23 Dec 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
207
893
0
21 Oct 2021
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
179
417
0
12 Oct 2021
Reconstruction guided Meta-learning for Few Shot Open Set Recognition
Reconstruction guided Meta-learning for Few Shot Open Set Recognition
Sayak Nag
Dripta S. Raychaudhuri
S. Paul
Amit K. Roy-Chowdhury
24
7
0
31 Jul 2021
Open-world Machine Learning: Applications, Challenges, and Opportunities
Open-world Machine Learning: Applications, Challenges, and Opportunities
Jitendra Parmar
S. Chouhan
Vaskar Raychoudhury
S. Rathore
OffRL
46
92
0
27 May 2021
Anomaly Detection of Adversarial Examples using Class-conditional
  Generative Adversarial Networks
Anomaly Detection of Adversarial Examples using Class-conditional Generative Adversarial Networks
Hang Wang
David J. Miller
G. Kesidis
GAN
AAML
32
12
0
21 May 2021
FLUID: A Unified Evaluation Framework for Flexible Sequential Data
FLUID: A Unified Evaluation Framework for Flexible Sequential Data
Matthew Wallingford
Aditya Kusupati
Keivan Alizadeh Vahid
Aaron Walsman
Aniruddha Kembhavi
Ali Farhadi
25
2
0
06 Jul 2020
Conditional Gaussian Distribution Learning for Open Set Recognition
Conditional Gaussian Distribution Learning for Open Set Recognition
Xin Sun
Zhen Yang
Chi Zhang
Guohao Peng
K. Ling
BDL
UQCV
164
217
0
19 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
310
9,202
0
06 Jun 2015
Previous
123