Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.01120
Cited By
Linear Systems can be Hard to Learn
2 April 2021
Anastasios Tsiamis
George J. Pappas
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Linear Systems can be Hard to Learn"
11 / 11 papers shown
Title
Boosting-Enabled Robust System Identification of Partially Observed LTI Systems Under Heavy-Tailed Noise
Vinay Kanakeri
Aritra Mitra
29
0
0
25 Apr 2025
Spectral Statistics of the Sample Covariance Matrix for High Dimensional Linear Gaussians
Muhammad Naeem
Miroslav Pajic
18
0
0
10 Dec 2023
On the Hardness of Learning to Stabilize Linear Systems
Xiong Zeng
Zexiang Liu
Zhe Du
N. Ozay
Mario Sznaier
29
3
0
18 Nov 2023
A Tutorial on the Non-Asymptotic Theory of System Identification
Ingvar M. Ziemann
Anastasios Tsiamis
Bruce D. Lee
Yassir Jedra
Nikolai Matni
George J. Pappas
30
25
0
07 Sep 2023
Learning and Concentration for High Dimensional Linear Gaussians: an Invariant Subspace Approach
Muhammad Naeem
32
2
0
04 Apr 2023
FedSysID: A Federated Approach to Sample-Efficient System Identification
Han Wang
Leonardo F. Toso
James Anderson
FedML
29
17
0
25 Nov 2022
Statistical Learning Theory for Control: A Finite Sample Perspective
Anastasios Tsiamis
Ingvar M. Ziemann
Nikolai Matni
George J. Pappas
28
73
0
12 Sep 2022
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
34
27
0
16 Jun 2022
How are policy gradient methods affected by the limits of control?
Ingvar M. Ziemann
Anastasios Tsiamis
H. Sandberg
Nikolai Matni
25
14
0
14 Jun 2022
Learning to Control Linear Systems can be Hard
Anastasios Tsiamis
Ingvar M. Ziemann
M. Morari
Nikolai Matni
George J. Pappas
24
14
0
27 May 2022
Active Learning in Robotics: A Review of Control Principles
Annalisa T. Taylor
Thomas A. Berrueta
Todd D. Murphey
32
71
0
25 Jun 2021
1