Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.00629
Cited By
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
1 April 2021
F. Pargent
Florian Pfisterer
Janek Thomas
B. Bischl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features"
7 / 7 papers shown
Title
Scalable Computations for Generalized Mixed Effects Models with Crossed Random Effects Using Krylov Subspace Methods
Pascal Kündig
Fabio Sigrist
24
0
0
14 May 2025
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
41
0
0
01 Jul 2024
Using Machine Learning Methods for Automation of Size Grid Building and Management
Salim Yunus
Dries F. Benoit
Filipa Peleja
18
0
0
16 Jun 2023
Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
Benjamin Avanzi
G. Taylor
Melantha Wang
Bernard Wong
22
12
0
30 Jan 2023
Lessons from the AdKDD'21 Privacy-Preserving ML Challenge
Eustache Diemert
Romain Fabre
Alexandre Gilotte
Fei Jia
Basile Leparmentier
Jérémie Mary
Zhonghua Qu
Ugo Tanielian
Hui Yang
59
6
0
31 Jan 2022
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
113
2,735
0
18 Aug 2015
1