Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.00615
Cited By
v1
v2
v3 (latest)
Physics-informed neural networks for the shallow-water equations on the sphere
1 April 2021
Alexander Bihlo
R. Popovych
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Physics-informed neural networks for the shallow-water equations on the sphere"
22 / 22 papers shown
Title
When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization?
Zheyuan Hu
Ameya Dilip Jagtap
George Karniadakis
Kenji Kawaguchi
AI4CE
PINN
52
88
0
20 Sep 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
162
284
0
20 Apr 2021
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
914
0
28 Jul 2020
A generative adversarial network approach to (ensemble) weather prediction
Alexander Bihlo
AI4Cl
46
79
0
13 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
808
42,055
0
28 May 2020
On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs
Yeonjong Shin
Jérome Darbon
George Karniadakis
PINN
62
79
0
03 Apr 2020
Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere
Jonathan A. Weyn
Dale Durran
R. Caruana
AI4Cl
41
262
0
15 Mar 2020
Ensemble methods for neural network-based weather forecasts
S. Scher
G. Messori
22
6
0
13 Feb 2020
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
174
1,221
0
19 Jan 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
97
295
0
13 Jan 2020
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
77
453
0
23 Sep 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
145
730
0
19 Jul 2019
Precipitation nowcasting using a stochastic variational frame predictor with learned prior distribution
Alexander Bihlo
BDL
43
10
0
13 May 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
123
373
0
13 May 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
238
996
0
01 Apr 2019
Multi-Task Learning as Multi-Objective Optimization
Ozan Sener
V. Koltun
163
1,283
0
10 Oct 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
154
1,451
0
22 Jun 2018
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
775
36,813
0
25 Aug 2016
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
566
7,992
0
13 Jun 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
166
2,808
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,231
0
19 Dec 2013
1