ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00031
  4. Cited By
NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network
  Training and Architecture Optimization

NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization

31 March 2021
Tien-Ju Yang
Yi-Lun Liao
Vivienne Sze
ArXiv (abs)PDFHTML

Papers citing "NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization"

32 / 32 papers shown
Title
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
Shreyash Arya
Sukrut Rao
Moritz Bohle
Bernt Schiele
164
3
0
28 Jan 2025
Unlearning-based Neural Interpretations
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
233
0
0
10 Oct 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGeVLM
260
3
0
28 Dec 2023
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
526
42,559
0
03 Dec 2019
Full-Gradient Representation for Neural Network Visualization
Full-Gradient Representation for Neural Network Visualization
Suraj Srinivas
François Fleuret
MILMFAtt
77
276
0
02 May 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly
  well on ImageNet
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSLFAtt
104
561
0
20 Mar 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
76
727
0
28 Jan 2019
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAttAAMLXAI
141
1,970
0
08 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
246
1,186
0
27 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILMXAI
128
946
0
20 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,176
0
19 Jun 2018
MaxGain: Regularisation of Neural Networks by Constraining Activation
  Magnitudes
MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes
Henry Gouk
Bernhard Pfahringer
E. Frank
M. Cree
52
7
0
16 Apr 2018
Improved Inception-Residual Convolutional Neural Network for Object
  Recognition
Improved Inception-Residual Convolutional Neural Network for Object Recognition
Md. Zahangir Alom
Mahmudul Hasan
C. Yakopcic
T. Taha
V. Asari
77
118
0
28 Dec 2017
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
177
4,602
0
26 Oct 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,879
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
191
6,015
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
89
948
0
01 Aug 2016
A Systematic Evaluation and Benchmark for Person Re-Identification:
  Features, Metrics, and Datasets
A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets
Srikrishna Karanam
Mengran Gou
Ziyan Wu
Angels Rates-Borras
Mario Sznaier
Richard J. Radke
92
58
0
31 May 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
351
7,995
0
23 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,338
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
348
10,079
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,260
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
251
4,681
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
On the Number of Linear Regions of Deep Neural Networks
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
90
1,256
0
08 Feb 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,316
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,902
0
12 Nov 2013
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
137
1,104
0
06 Dec 2009
1