ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.16807
13
23

Learning and Exploring Motor Skills with Spacetime Bounds

31 March 2021
Li-Ke Ma
Zeshi Yang
Xin Tong
B. Guo
KangKang Yin
ArXivPDFHTML
Abstract

Equipping characters with diverse motor skills is the current bottleneck of physics-based character animation. We propose a Deep Reinforcement Learning (DRL) framework that enables physics-based characters to learn and explore motor skills from reference motions. The key insight is to use loose space-time constraints, termed spacetime bounds, to limit the search space in an early termination fashion. As we only rely on the reference to specify loose spacetime bounds, our learning is more robust with respect to low quality references. Moreover, spacetime bounds are hard constraints that improve learning of challenging motion segments, which can be ignored by imitation-only learning. We compare our method with state-of-the-art tracking-based DRL methods. We also show how to guide style exploration within the proposed framework

View on arXiv
Comments on this paper