ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15798
74
23
v1v2 (latest)

Rethinking Neural Operations for Diverse Tasks

29 March 2021
Nicholas Roberts
M. Khodak
Tri Dao
Liam Li
Christopher Ré
Ameet Talwalkar
    AI4CE
ArXiv (abs)PDFHTML
Abstract

An important goal of neural architecture search (NAS) is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this broader vision for NAS, we study the problem of enabling users to discover the right neural operations given data from their specific domain. We introduce a search space of neural operations called XD-Operations that mimic the inductive bias of standard multichannel convolutions while being much more expressive: we prove that XD-operations include many named operations across several application areas. Starting with any standard backbone network such as LeNet or ResNet, we show how to transform it into an architecture search space over XD-operations and how to traverse the space using a simple weight-sharing scheme. On a diverse set of applications--image classification, solving partial differential equations (PDEs), and sequence modeling--our approach consistently yields models with lower error than baseline networks and sometimes even lower error than expert-designed domain-specific approaches.

View on arXiv
Comments on this paper