Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.15750
Cited By
Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design
25 March 2021
Cong Hao
Jordan Dotzel
Jinjun Xiong
Luca Benini
Zhiru Zhang
Deming Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design"
8 / 8 papers shown
Title
Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Jing Liu
Yao Du
Kun Yang
Yan Wang
Xiping Hu
Zehua Wang
Yang Liu
Peng Sun
Azzedine Boukerche
Victor C.M. Leung
43
0
0
03 May 2025
Learning from Students: Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs
Jordan Dotzel
Yuzong Chen
Bahaa Kotb
Sushma Prasad
Gang Wu
Sheng Li
Mohamed S. Abdelfattah
Zhiru Zhang
31
8
0
06 May 2024
FLIQS: One-Shot Mixed-Precision Floating-Point and Integer Quantization Search
Jordan Dotzel
Gang Wu
Andrew Li
M. Umar
Yun Ni
...
Liqun Cheng
Martin G. Dixon
N. Jouppi
Quoc V. Le
Sheng Li
MQ
27
3
0
07 Aug 2023
AI Augmented Edge and Fog Computing: Trends and Challenges
Shreshth Tuli
Fatemeh Mirhakimi
Samodha Pallewatta
Syed Zawad
G. Casale
B. Javadi
Feng Yan
Rajkumar Buyya
N. Jennings
21
56
0
01 Aug 2022
PhiNets: a scalable backbone for low-power AI at the edge
Francesco Paissan
Alberto Ancilotto
Elisabetta Farella
26
32
0
01 Oct 2021
3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization, and Ultra-Low Latency Acceleration
Yao Chen
Cole Hawkins
Kaiqi Zhang
Zheng-Wei Zhang
Cong Hao
18
8
0
11 May 2021
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications
Tien-Ju Yang
Andrew G. Howard
Bo Chen
Xiao Zhang
Alec Go
Mark Sandler
Vivienne Sze
Hartwig Adam
90
515
0
09 Apr 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
1