ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15718
  4. Cited By
von Mises-Fisher Loss: An Exploration of Embedding Geometries for
  Supervised Learning

von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning

29 March 2021
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
ArXivPDFHTML

Papers citing "von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning"

27 / 27 papers shown
Title
SphOR: A Representation Learning Perspective on Open-set Recognition for Identifying Unknown Classes in Deep Learning Models
SphOR: A Representation Learning Perspective on Open-set Recognition for Identifying Unknown Classes in Deep Learning Models
Nadarasar Bahavan
Sachith Seneviratne
Saman K. Halgamuge
BDL
45
0
0
11 Mar 2025
Distribution Guidance Network for Weakly Supervised Point Cloud Semantic
  Segmentation
Distribution Guidance Network for Weakly Supervised Point Cloud Semantic Segmentation
Zhiyi Pan
Wei-Nan Gao
Shan Liu
Ge Li
27
1
0
10 Oct 2024
Reducing Semantic Ambiguity In Domain Adaptive Semantic Segmentation Via
  Probabilistic Prototypical Pixel Contrast
Reducing Semantic Ambiguity In Domain Adaptive Semantic Segmentation Via Probabilistic Prototypical Pixel Contrast
Xiaoke Hao
Shiyu Liu
Chuanbo Feng
Ye Zhu
33
0
0
27 Sep 2024
Your Classifier Can Be Secretly a Likelihood-Based OOD Detector
Your Classifier Can Be Secretly a Likelihood-Based OOD Detector
Jirayu Burapacheep
Yixuan Li
OODD
34
3
0
09 Aug 2024
Probabilistic Contrastive Learning with Explicit Concentration on the
  Hypersphere
Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere
H. Li
Ouyang Cheng
Tamaz Amiranashvili
Matthew S. Rosen
Bjoern H. Menze
J. Iglesias
43
0
0
26 May 2024
Dynamic Feature Learning and Matching for Class-Incremental Learning
Dynamic Feature Learning and Matching for Class-Incremental Learning
Sunyuan Qiang
Yanyan Liang
Jun Wan
Du Zhang
CLL
38
3
0
14 May 2024
Transductive Zero-Shot and Few-Shot CLIP
Transductive Zero-Shot and Few-Shot CLIP
Ségolène Martin
Yunshi Huang
Fereshteh Shakeri
J. Pesquet
Ismail Ben Ayed
BDL
VLM
28
13
0
08 Apr 2024
Probabilistic Contrastive Learning for Long-Tailed Visual Recognition
Probabilistic Contrastive Learning for Long-Tailed Visual Recognition
Chaoqun Du
Yulin Wang
Shiji Song
Gao Huang
41
24
0
11 Mar 2024
Seeing Unseen: Discover Novel Biomedical Concepts via
  Geometry-Constrained Probabilistic Modeling
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
Jianan Fan
Dongnan Liu
Hang Chang
Heng-Chiao Huang
Mei Chen
Weidong Cai
43
5
0
02 Mar 2024
PRCL: Probabilistic Representation Contrastive Learning for
  Semi-Supervised Semantic Segmentation
PRCL: Probabilistic Representation Contrastive Learning for Semi-Supervised Semantic Segmentation
Haoyu Xie
Changqi Wang
Jian-jun Zhao
Yang Liu
Jun Dan
Chong Fu
Baigui Sun
SSL
39
8
0
28 Feb 2024
The Unreasonable Effectiveness of Random Target Embeddings for
  Continuous-Output Neural Machine Translation
The Unreasonable Effectiveness of Random Target Embeddings for Continuous-Output Neural Machine Translation
E. Tokarchuk
Vlad Niculae
27
2
0
31 Oct 2023
Introspective Deep Metric Learning
Introspective Deep Metric Learning
Cheng-Hao Wang
Wenzhao Zheng
Zheng Hua Zhu
Jie Zhou
Jiwen Lu
UQCV
30
12
0
11 Sep 2023
URL: A Representation Learning Benchmark for Transferable Uncertainty
  Estimates
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
364
13
0
07 Jul 2023
Geometric Autoencoders -- What You See is What You Decode
Geometric Autoencoders -- What You See is What You Decode
Philipp Nazari
Sebastian Damrich
Fred Hamprecht
30
12
0
30 Jun 2023
Variational Classification
Variational Classification
S. Dhuliawala
Mrinmaya Sachan
Carl Allen
BDL
14
5
0
17 May 2023
Few-shot Classification via Ensemble Learning with Multi-Order
  Statistics
Few-shot Classification via Ensemble Learning with Multi-Order Statistics
Sai Yang
Fan Liu
Delong Chen
Jun Zhou
17
6
0
30 Apr 2023
Factorizers for Distributed Sparse Block Codes
Factorizers for Distributed Sparse Block Codes
Michael Hersche
Aleksandar Terzić
G. Karunaratne
Jovin Langenegger
Angeline Pouget
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
39
4
0
24 Mar 2023
Probabilistic Contrastive Learning Recovers the Correct Aleatoric
  Uncertainty of Ambiguous Inputs
Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs
Michael Kirchhof
Enkelejda Kasneci
Seong Joon Oh
UQCV
355
19
0
06 Feb 2023
An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly
  Better?
An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better?
Tyler R. Scott
Ting Liu
Michael C. Mozer
Andrew C. Gallagher
CVBM
FedML
26
1
0
09 Nov 2022
Boosting Semi-Supervised Semantic Segmentation with Probabilistic
  Representations
Boosting Semi-Supervised Semantic Segmentation with Probabilistic Representations
Haoyu Xie
Changqi Wang
Mingkai Zheng
Minjing Dong
Shan You
Chong Fu
Chang Xu
SSL
39
14
0
26 Oct 2022
ScaleFace: Uncertainty-aware Deep Metric Learning
ScaleFace: Uncertainty-aware Deep Metric Learning
Roma Kail
Kirill Fedyanin
Nikita Muravev
Alexey Zaytsev
Maxim Panov
CVBM
UQCV
22
5
0
05 Sep 2022
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
Michael Kirchhof
Karsten Roth
Zeynep Akata
Enkelejda Kasneci
17
12
0
08 Jul 2022
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
Ruben Ohana
Kimia Nadjahi
A. Rakotomamonjy
L. Ralaivola
13
6
0
07 Jun 2022
Representation Uncertainty in Self-Supervised Learning as Variational
  Inference
Representation Uncertainty in Self-Supervised Learning as Variational Inference
Hiroki Nakamura
Masashi Okada
T. Taniguchi
25
18
0
22 Mar 2022
Magnitude-aware Probabilistic Speaker Embeddings
Magnitude-aware Probabilistic Speaker Embeddings
Nikita Kuzmin
Igor Fedorov
A. Sholokhov
27
7
0
28 Feb 2022
Probabilistic Embeddings Revisited
Probabilistic Embeddings Revisited
I. Karpukhin
Stanislav Dereka
Sergey Kolesnikov
UQCV
AAML
12
10
0
14 Feb 2022
Understanding Invariance via Feedforward Inversion of Discriminatively
  Trained Classifiers
Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers
Piotr Teterwak
Chiyuan Zhang
Dilip Krishnan
Michael C. Mozer
31
9
0
15 Mar 2021
1