Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.15718
Cited By
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
29 March 2021
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning"
27 / 27 papers shown
Title
SphOR: A Representation Learning Perspective on Open-set Recognition for Identifying Unknown Classes in Deep Learning Models
Nadarasar Bahavan
Sachith Seneviratne
Saman K. Halgamuge
BDL
45
0
0
11 Mar 2025
Distribution Guidance Network for Weakly Supervised Point Cloud Semantic Segmentation
Zhiyi Pan
Wei-Nan Gao
Shan Liu
Ge Li
27
1
0
10 Oct 2024
Reducing Semantic Ambiguity In Domain Adaptive Semantic Segmentation Via Probabilistic Prototypical Pixel Contrast
Xiaoke Hao
Shiyu Liu
Chuanbo Feng
Ye Zhu
33
0
0
27 Sep 2024
Your Classifier Can Be Secretly a Likelihood-Based OOD Detector
Jirayu Burapacheep
Yixuan Li
OODD
34
3
0
09 Aug 2024
Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere
H. Li
Ouyang Cheng
Tamaz Amiranashvili
Matthew S. Rosen
Bjoern H. Menze
J. Iglesias
43
0
0
26 May 2024
Dynamic Feature Learning and Matching for Class-Incremental Learning
Sunyuan Qiang
Yanyan Liang
Jun Wan
Du Zhang
CLL
38
3
0
14 May 2024
Transductive Zero-Shot and Few-Shot CLIP
Ségolène Martin
Yunshi Huang
Fereshteh Shakeri
J. Pesquet
Ismail Ben Ayed
BDL
VLM
28
13
0
08 Apr 2024
Probabilistic Contrastive Learning for Long-Tailed Visual Recognition
Chaoqun Du
Yulin Wang
Shiji Song
Gao Huang
41
24
0
11 Mar 2024
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
Jianan Fan
Dongnan Liu
Hang Chang
Heng-Chiao Huang
Mei Chen
Weidong Cai
43
5
0
02 Mar 2024
PRCL: Probabilistic Representation Contrastive Learning for Semi-Supervised Semantic Segmentation
Haoyu Xie
Changqi Wang
Jian-jun Zhao
Yang Liu
Jun Dan
Chong Fu
Baigui Sun
SSL
39
8
0
28 Feb 2024
The Unreasonable Effectiveness of Random Target Embeddings for Continuous-Output Neural Machine Translation
E. Tokarchuk
Vlad Niculae
27
2
0
31 Oct 2023
Introspective Deep Metric Learning
Cheng-Hao Wang
Wenzhao Zheng
Zheng Hua Zhu
Jie Zhou
Jiwen Lu
UQCV
30
12
0
11 Sep 2023
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
364
13
0
07 Jul 2023
Geometric Autoencoders -- What You See is What You Decode
Philipp Nazari
Sebastian Damrich
Fred Hamprecht
30
12
0
30 Jun 2023
Variational Classification
S. Dhuliawala
Mrinmaya Sachan
Carl Allen
BDL
14
5
0
17 May 2023
Few-shot Classification via Ensemble Learning with Multi-Order Statistics
Sai Yang
Fan Liu
Delong Chen
Jun Zhou
17
6
0
30 Apr 2023
Factorizers for Distributed Sparse Block Codes
Michael Hersche
Aleksandar Terzić
G. Karunaratne
Jovin Langenegger
Angeline Pouget
G. Cherubini
Luca Benini
Abu Sebastian
Abbas Rahimi
39
4
0
24 Mar 2023
Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs
Michael Kirchhof
Enkelejda Kasneci
Seong Joon Oh
UQCV
355
19
0
06 Feb 2023
An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better?
Tyler R. Scott
Ting Liu
Michael C. Mozer
Andrew C. Gallagher
CVBM
FedML
26
1
0
09 Nov 2022
Boosting Semi-Supervised Semantic Segmentation with Probabilistic Representations
Haoyu Xie
Changqi Wang
Mingkai Zheng
Minjing Dong
Shan You
Chong Fu
Chang Xu
SSL
39
14
0
26 Oct 2022
ScaleFace: Uncertainty-aware Deep Metric Learning
Roma Kail
Kirill Fedyanin
Nikita Muravev
Alexey Zaytsev
Maxim Panov
CVBM
UQCV
22
5
0
05 Sep 2022
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
Michael Kirchhof
Karsten Roth
Zeynep Akata
Enkelejda Kasneci
17
12
0
08 Jul 2022
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
Ruben Ohana
Kimia Nadjahi
A. Rakotomamonjy
L. Ralaivola
13
6
0
07 Jun 2022
Representation Uncertainty in Self-Supervised Learning as Variational Inference
Hiroki Nakamura
Masashi Okada
T. Taniguchi
25
18
0
22 Mar 2022
Magnitude-aware Probabilistic Speaker Embeddings
Nikita Kuzmin
Igor Fedorov
A. Sholokhov
27
7
0
28 Feb 2022
Probabilistic Embeddings Revisited
I. Karpukhin
Stanislav Dereka
Sergey Kolesnikov
UQCV
AAML
12
10
0
14 Feb 2022
Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers
Piotr Teterwak
Chiyuan Zhang
Dilip Krishnan
Michael C. Mozer
31
9
0
15 Mar 2021
1