Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.14779
Cited By
Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural Networks
27 March 2021
M. Singh
V. Kekatos
G. Giannakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural Networks"
22 / 22 papers shown
Title
A Data-Driven Real-Time Optimal Power Flow Algorithm Using Local Feedback
Heng Liang
Yujin Huang
Changhong Zhao
65
0
0
24 Feb 2025
Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow
S. Pineda
Juan Pérez-Ruiz
J. Morales
AI4CE
51
0
0
28 Jan 2025
Generative Edge Detection with Stable Diffusion
Caixia Zhou
Yaping Huang
Mochu Xiang
Jiahui Ren
Haibin Ling
Jing Zhang
59
0
0
04 Oct 2024
Machine Learning for Scalable and Optimal Load Shedding Under Power System Contingency
Yuqi Zhou
Hao Zhu
26
1
0
09 May 2024
QCQP-Net: Reliably Learning Feasible Alternating Current Optimal Power Flow Solutions Under Constraints
Sihan Zeng
Youngdae Kim
Yuxuan Ren
Kibaek Kim
47
2
0
11 Jan 2024
Operational risk quantification of power grids using graph neural network surrogates of the DC OPF
Yadong Zhang
Pranav M. Karve
Sankaran Mahadevan
AI4CE
18
0
0
07 Nov 2023
Physics-Guided Graph Neural Networks for Real-time AC/DC Power Flow Analysis
Meiying Yang
Gao Qiu
Yonghuang Wu
Junyong Liu
Nina Dai
Yue Shui
Kai Liu
Lijie Ding
AI4CE
14
1
0
29 Apr 2023
An Efficient Learning-Based Solver for Two-Stage DC Optimal Power Flow with Feasibility Guarantees
Ling Zhang
Daniel Tabas
Baosen Zhang
9
4
0
03 Apr 2023
Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees
Rahul Nellikkath
Spyros Chatzivasileiadis
36
3
0
23 Mar 2023
Optimal Power Flow Based on Physical-Model-Integrated Neural Network with Worth-Learning Data Generation
Zuntao Hu
Hongcai Zhang
AI4CE
32
6
0
10 Jan 2023
Minimizing Worst-Case Violations of Neural Networks
Rahul Nellikkath
Spyros Chatzivasileiadis
38
3
0
21 Dec 2022
Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian Processes
Milena Mitrović
A. Lukashevich
Petr Vorobev
Vladimir Terzija
Yury Maximov
Deepjyoti Deka
24
1
0
30 Aug 2022
Data-Driven Stochastic AC-OPF using Gaussian Processes
M. Mitrovic
A. Lukashevich
Petr Vorobev
Vladimir Terzija
S. Budenny
Yury Maximov
Deepjoyti Deka
30
4
0
21 Jul 2022
Topology-aware Graph Neural Networks for Learning Feasible and Adaptive ac-OPF Solutions
Shaohui Liu
Chengyang Wu
Hao Zhu
35
47
0
16 May 2022
Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems
Jochen Stiasny
Samuel C. Chevalier
Rahul Nellikkath
Brynjar Sævarsson
Spyros Chatzivasileiadis
29
14
0
14 Mar 2022
DNN-based Policies for Stochastic AC OPF
Sarthak Gupta
Sidhant Misra
Deepjyoti Deka
V. Kekatos
34
13
0
04 Dec 2021
Power Flow Balancing with Decentralized Graph Neural Networks
Jonas Berg Hansen
S. N. Anfinsen
F. Bianchi
31
34
0
03 Nov 2021
OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets
Trager Joswig-Jones
K. Baker
Ahmed S. Zamzam
15
25
0
01 Nov 2021
Learning to Solve the AC Optimal Power Flow via a Lagrangian Approach
Ling Zhang
Baosen Zhang
22
8
0
04 Oct 2021
Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC Optimal Power Flow
Rahul Nellikkath
Spyros Chatzivasileiadis
PINN
15
32
0
28 Jun 2021
Controlling Smart Inverters using Proxies: A Chance-Constrained DNN-based Approach
Sarthak Gupta
V. Kekatos
Ming Jin
32
20
0
02 May 2021
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
81
199
0
19 Sep 2019
1