Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.14651
Cited By
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
27 March 2021
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice"
38 / 38 papers shown
Title
Learning Probabilities of Causation from Finite Population Data
Ang Li
Song Jiang
Yizhou Sun
Judea Pearl
AI4CE
36
7
0
16 Oct 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
228
190
0
03 Feb 2022
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
48
106
0
22 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
118
662
0
20 Mar 2021
Causal Sufficiency and Actual Causation
Sander Beckers
13
37
0
03 Feb 2021
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
37
99
0
10 Nov 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
97
151
0
03 Nov 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
47
172
0
08 Oct 2020
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
85
801
0
09 Jul 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
94
179
0
11 Jun 2020
Causal Feature Learning for Utility-Maximizing Agents
David Kinney
David S. Watson
34
9
0
18 May 2020
Decision-theoretic foundations for statistical causality
P. Dawid
CML
AI4CE
13
52
0
26 Apr 2020
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDI
FAtt
64
362
0
25 Feb 2020
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
37
146
0
21 Feb 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
42
340
0
14 Feb 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
31
70
0
21 Jan 2020
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
78
88
0
04 Dec 2019
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
46
251
0
15 Nov 2019
The many Shapley values for model explanation
Mukund Sundararajan
A. Najmi
TDI
FAtt
48
628
0
22 Aug 2019
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
76
487
0
09 Jul 2019
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
49
29
0
29 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
48
610
0
25 Mar 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
124
1,428
0
14 Jan 2019
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
96
1,451
0
29 Nov 2018
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
46
223
0
26 Nov 2018
Actionable Recourse in Linear Classification
Berk Ustun
Alexander Spangher
Yang Liu
FaML
84
545
0
18 Sep 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
89
587
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
88
63
0
21 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
162
1,828
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
73
2,332
0
01 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
217
4,229
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
538
21,613
0
22 May 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
123
3,672
0
10 Jun 2016
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
48
743
0
05 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
808
149,474
0
22 Dec 2014
General theory for interactions in sufficient cause models with dichotomous exposures
T. VanderWeele
Thomas S. Richardson
49
31
0
29 Jan 2013
Probabilities of Causation: Bounds and Identification
Jin Tian
Judea Pearl
71
213
0
16 Jan 2013
1