ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.14533
19
30

3D Point Cloud Registration with Multi-Scale Architecture and Unsupervised Transfer Learning

26 March 2021
Sofiane Horache
Jean-Emmanuel Deschaud
Franccois Goulette
    3DPC
ArXivPDFHTML
Abstract

We propose a method for generalizing deep learning for 3D point cloud registration on new, totally different datasets. It is based on two components, MS-SVConv and UDGE. Using Multi-Scale Sparse Voxel Convolution, MS-SVConv is a fast deep neural network that outputs the descriptors from point clouds for 3D registration between two scenes. UDGE is an algorithm for transferring deep networks on unknown datasets in a unsupervised way. The interest of the proposed method appears while using the two components, MS-SVConv and UDGE, together as a whole, which leads to state-of-the-art results on real world registration datasets such as 3DMatch, ETH and TUM. The code is publicly available at https://github.com/humanpose1/MS-SVConv .

View on arXiv
Comments on this paper