Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.14029
Cited By
Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach
25 March 2021
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach"
22 / 22 papers shown
Title
Doubly Robust Proximal Causal Learning for Continuous Treatments
Yong Wu
Yanwei Fu
Shouyan Wang
Xinwei Sun
26
1
0
22 Sep 2023
A Convex Framework for Confounding Robust Inference
Kei Ishikawa
Naio He
Takafumi Kanamori
OffRL
25
0
0
21 Sep 2023
Kernel Single Proxy Control for Deterministic Confounding
Liyuan Xu
Arthur Gretton
CML
26
2
0
08 Aug 2023
Minimax Instrumental Variable Regression and
L
2
L_2
L
2
Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
36
14
0
10 Feb 2023
Falsification of Internal and External Validity in Observational Studies via Conditional Moment Restrictions
Zeshan Hussain
M. Shih
Michael Oberst
Ilker Demirel
D. Sontag
34
8
0
30 Jan 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
28
4
0
26 Jan 2023
Adapting to Latent Subgroup Shifts via Concepts and Proxies
Ibrahim M. Alabdulmohsin
Nicole Chiou
Alexander DÁmour
Arthur Gretton
Sanmi Koyejo
Matt J. Kusner
Stephen R. Pfohl
Olawale Salaudeen
Jessica Schrouff
Katherine Tsai
68
9
0
21 Dec 2022
Optimal Treatment Regimes for Proximal Causal Learning
Tao Shen
Yifan Cui
CML
38
3
0
19 Dec 2022
Inference on Strongly Identified Functionals of Weakly Identified Functions
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
38
15
0
17 Aug 2022
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
OffRL
49
32
0
24 Jun 2022
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes
Miao Lu
Yifei Min
Zhaoran Wang
Zhuoran Yang
OffRL
57
22
0
26 May 2022
Deep Learning Methods for Proximal Inference via Maximum Moment Restriction
Benjamin Kompa
David R. Bellamy
Thomas Kolokotrones
J. M. Robins
Andrew L. Beam
39
12
0
19 May 2022
Controlling for Latent Confounding with Triple Proxies
Ben Deaner
CML
24
0
0
28 Apr 2022
Proximal Causal Inference for Marginal Counterfactual Survival Curves
Andrew Ying
Yifan Cui
E. T. Tchetgen
42
10
0
27 Apr 2022
Off-Policy Confidence Interval Estimation with Confounded Markov Decision Process
C. Shi
Jin Zhu
Ye Shen
Shuang Luo
Hong Zhu
R. Song
OffRL
28
30
0
22 Feb 2022
Combining Experimental and Observational Data for Identification and Estimation of Long-Term Causal Effects
AmirEmad Ghassami
Alan Yang
David Richardson
I. Shpitser
E. T. Tchetgen
CML
29
17
0
26 Jan 2022
Causal Inference with Hidden Mediators
AmirEmad Ghassami
Alan Yang
I. Shpitser
E. T. Tchetgen
19
6
0
04 Nov 2021
Many Proxy Controls
Ben Deaner
AI4CE
36
7
0
08 Oct 2021
Proximal Causal Inference for Complex Longitudinal Studies
Andrew Ying
Wang Miao
Xu Shi
E. T. Tchetgen
32
39
0
15 Sep 2021
The Proximal ID Algorithm
I. Shpitser
Zach Wood-Doughty
E. T. Tchetgen
CML
35
17
0
15 Aug 2021
Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding
Zhengling Qi
Rui Miao
Xiaoke Zhang
CML
36
28
0
03 May 2021
Semiparametric proximal causal inference
Yifan Cui
Hongming Pu
Xu Shi
Wang Miao
E. T. Tchetgen Tchetgen
23
100
0
17 Nov 2020
1