ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.13701
  4. Cited By
ECINN: Efficient Counterfactuals from Invertible Neural Networks

ECINN: Efficient Counterfactuals from Invertible Neural Networks

25 March 2021
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
    BDL
ArXivPDFHTML

Papers citing "ECINN: Efficient Counterfactuals from Invertible Neural Networks"

11 / 11 papers shown
Title
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Global Counterfactual Directions
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
  Tabular Data using Normalizing Flows
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
37
7
0
26 Mar 2023
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Pedro C. Neto
Tiago B. Gonccalves
João Ribeiro Pinto
W. Silva
Ana F. Sequeira
Arun Ross
Jaime S. Cardoso
XAI
36
12
0
19 Aug 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
  Dataset
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
29
14
0
25 Apr 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
32
55
0
29 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
35
69
0
21 Feb 2022
When less is more: Simplifying inputs aids neural network understanding
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
24
5
0
14 Jan 2022
Fighting Money Laundering with Statistics and Machine Learning
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
36
13
0
11 Jan 2022
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
1