Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.13701
Cited By
ECINN: Efficient Counterfactuals from Invertible Neural Networks
25 March 2021
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ECINN: Efficient Counterfactuals from Invertible Neural Networks"
11 / 11 papers shown
Title
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
37
7
0
26 Mar 2023
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Pedro C. Neto
Tiago B. Gonccalves
João Ribeiro Pinto
W. Silva
Ana F. Sequeira
Arun Ross
Jaime S. Cardoso
XAI
36
12
0
19 Aug 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
29
14
0
25 Apr 2022
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
32
55
0
29 Mar 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
35
69
0
21 Feb 2022
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
24
5
0
14 Jan 2022
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
36
13
0
11 Jan 2022
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
1