Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.12959
Cited By
Solving and Learning Nonlinear PDEs with Gaussian Processes
24 March 2021
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Solving and Learning Nonlinear PDEs with Gaussian Processes"
50 / 76 papers shown
Title
Solving Nonlinear PDEs with Sparse Radial Basis Function Networks
Zihan Shao
Konstantin Pieper
Xiaochuan Tian
31
0
0
12 May 2025
Gaussian Process Policy Iteration with Additive Schwarz Acceleration for Forward and Inverse HJB and Mean Field Game Problems
Xianjin Yang
Jingguo Zhang
24
0
0
01 May 2025
Towards scientific machine learning for granular material simulations -- challenges and opportunities
Marc Fransen
Andreas Fürst
D. Tunuguntla
Daniel N. Wilke
Benedikt Alkin
...
Takayuki Shuku
WaiChing Sun
T. Weinhart
Dongwei Ye
Hongyang Cheng
AI4CE
39
1
0
01 Apr 2025
Flexible and Efficient Probabilistic PDE Solvers through Gaussian Markov Random Fields
Tim Weiland
Marvin Pfortner
Philipp Hennig
AI4CE
47
0
0
11 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
48
0
0
02 Mar 2025
Understanding Generalization in Physics Informed Models through Affine Variety Dimensions
Takeshi Koshizuka
Issei Sato
AI4CE
112
0
0
31 Jan 2025
Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator
Jonghyeon Lee
B. Hamzi
Boya Hou
H. Owhadi
G. Santin
Umesh Vaidya
82
1
0
21 Dec 2024
Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
Zhitong Xu
Da Long
Yiming Xu
Guang Yang
Shandian Zhe
Houman Owhadi
40
0
0
15 Oct 2024
Physics-informed kernel learning
Nathan Doumèche
Francis Bach
Gérard Biau
Claire Boyer
PINN
39
2
0
20 Sep 2024
Stability Analysis of Physics-Informed Neural Networks for Stiff Linear Differential Equations
Gianluca Fabiani
Erik Bollt
Constantinos Siettos
A. Yannacopoulos
56
0
0
27 Aug 2024
Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach
Daniel Lengyel
P. Parpas
B. Hamzi
H. Owhadi
35
1
0
12 Aug 2024
Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities
José A. Carrillo
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Dongyi Wei
AI4CE
29
3
0
22 Jul 2024
Physics-Constrained Learning for PDE Systems with Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
Thomas Beckers
AI4CE
26
3
0
17 Jun 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
71
1
0
07 Jun 2024
Scaling up Probabilistic PDE Simulators with Structured Volumetric Information
Tim Weiland
Marvin Pfortner
Philipp Hennig
AI4CE
42
2
0
07 Jun 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
65
1
0
21 May 2024
Neural Operator induced Gaussian Process framework for probabilistic solution of parametric partial differential equations
Sawan Kumar
R. Nayek
Souvik Chakraborty
40
2
0
24 Apr 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
52
7
0
12 Apr 2024
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
26
1
0
08 Apr 2024
A High Order Solver for Signature Kernels
M. Lemercier
Terry Lyons
31
3
0
01 Apr 2024
Iterated INLA for State and Parameter Estimation in Nonlinear Dynamical Systems
Rafael Anderka
M. Deisenroth
So Takao
38
1
0
26 Feb 2024
PINN-BO: A Black-box Optimization Algorithm using Physics-Informed Neural Networks
Dat Phan-Trong
Hung The Tran
A. Shilton
Sunil R. Gupta
49
0
0
05 Feb 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
21
17
0
29 Dec 2023
Gaussian process learning of nonlinear dynamics
Dongwei Ye
Mengwu Guo
23
4
0
19 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
19
0
0
13 Dec 2023
Decoding Mean Field Games from Population and Environment Observations By Gaussian Processes
Jinyan Guo
Chenchen Mou
Xianjin Yang
Chao Zhou
AI4CE
27
5
0
08 Dec 2023
Computational Hypergraph Discovery, a Gaussian Process framework for connecting the dots
Théo Bourdais
Pau Batlle
Xianjin Yang
Ricardo Baptista
Nicolas Rouquette
H. Owhadi
26
0
0
28 Nov 2023
Bridging Algorithmic Information Theory and Machine Learning: A New Approach to Kernel Learning
B. Hamzi
Marcus Hutter
H. Owhadi
26
3
0
21 Nov 2023
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Shikai Fang
Madison Cooley
Da Long
Shibo Li
R. Kirby
Shandian Zhe
40
4
0
08 Nov 2023
Data-Driven Model Selections of Second-Order Particle Dynamics via Integrating Gaussian Processes with Low-Dimensional Interacting Structures
Jinchao Feng
Charles Kulick
Sui Tang
29
2
0
01 Nov 2023
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
26
0
0
09 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
30
13
0
05 Oct 2023
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points
Gianluca Fabiani
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Cristina P. Martin-Linares
Constantinos Siettos
Ioannis G. Kevrekidis
40
2
0
25 Sep 2023
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE Discovery
Pongpisit Thanasutives
Takashi Morita
M. Numao
Ken-ichi Fukui
34
2
0
20 Aug 2023
Coupling parameter and particle dynamics for adaptive sampling in Neural Galerkin schemes
Yuxiao Wen
Eric Vanden-Eijnden
Benjamin Peherstorfer
29
13
0
27 Jun 2023
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
29
9
0
23 May 2023
A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data
Elham Kiyani
K. Shukla
George Karniadakis
M. Karttunen
33
21
0
18 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Kernel Methods are Competitive for Operator Learning
Pau Batlle
Matthieu Darcy
Bamdad Hosseini
H. Owhadi
16
38
0
26 Apr 2023
Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear PDEs
Jinshuai Bai
Guirong Liu
Ashish Gupta
Laith Alzubaidi
Xinzhu Feng
Yuantong T. Gu
PINN
29
1
0
13 Apr 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes
Yifan Chen
H. Owhadi
F. Schafer
45
31
0
03 Apr 2023
Efficient Sampling of Stochastic Differential Equations with Positive Semi-Definite Models
Anant Raj
Umut Simsekli
Alessandro Rudi
DiffM
31
1
0
30 Mar 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
27
17
0
21 Feb 2023
The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach
Yongcun Song
Xiaoming Yuan
Hangrui Yue
PINN
37
0
0
16 Feb 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
35
11
0
26 Jan 2023
Learning Dynamical Systems from Data: A Simple Cross-Validation Perspective, Part V: Sparse Kernel Flows for 132 Chaotic Dynamical Systems
L. Yang
Xiuwen Sun
B. Hamzi
H. Owhadi
Nai-ming Xie
24
20
0
24 Jan 2023
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
34
12
0
18 Jan 2023
Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients
Marc Härkönen
Markus Lange-Hegermann
Bogdan Raiță
32
15
0
29 Dec 2022
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
11
2
0
22 Dec 2022
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
S. Hubbert
Emilio Porcu
Chris J. Oates
Mark Girolami
24
4
0
16 Nov 2022
1
2
Next