ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.12814
  4. Cited By
Co-matching: Combating Noisy Labels by Augmentation Anchoring

Co-matching: Combating Noisy Labels by Augmentation Anchoring

23 March 2021
Yangdi Lu
Yang Bo
Wenbo He
    NoLa
ArXivPDFHTML

Papers citing "Co-matching: Combating Noisy Labels by Augmentation Anchoring"

3 / 3 papers shown
Title
Centrality and Consistency: Two-Stage Clean Samples Identification for
  Learning with Instance-Dependent Noisy Labels
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels
Ganlong Zhao
Guanbin Li
Yipeng Qin
Feng Liu
Yizhou Yu
NoLa
33
22
0
29 Jul 2022
Combating noisy labels by agreement: A joint training method with
  co-regularization
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
319
498
0
05 Mar 2020
Curriculum Loss: Robust Learning and Generalization against Label
  Corruption
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
61
172
0
24 May 2019
1