Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.10935
Cited By
Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methods
13 February 2021
B. Hamzi
R. Maulik
H. Owhadi
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methods"
8 / 8 papers shown
Title
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
33
1
0
30 May 2024
Computational Hypergraph Discovery, a Gaussian Process framework for connecting the dots
Théo Bourdais
Pau Batlle
Xianjin Yang
Ricardo Baptista
Nicolas Rouquette
H. Owhadi
21
0
0
28 Nov 2023
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Matthieu Darcy
B. Hamzi
Giulia Livieri
H. Owhadi
P. Tavallali
36
26
0
24 Sep 2022
Gaussian Process Hydrodynamics
H. Owhadi
26
1
0
21 Sep 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
24
1
0
29 Jul 2022
Deep learning for surrogate modelling of 2D mantle convection
Siddhant Agarwal
Nicola Tosi
Pan Kessel
D. Breuer
G. Montavon
AI4TS
AI4CE
28
7
0
23 Aug 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
239
7,916
0
13 Jun 2015
1