Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.10609
Cited By
Boosting Adversarial Transferability through Enhanced Momentum
19 March 2021
Xiaosen Wang
Jiadong Lin
Han Hu
Jingdong Wang
Kun He
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Boosting Adversarial Transferability through Enhanced Momentum"
36 / 36 papers shown
Title
Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
Wenyuan Wu
Zheng Liu
Yong Chen
Chao Su
Dezhong Peng
Xu Wang
AAML
111
0
0
24 Feb 2025
Enhancing the Transferability of Adversarial Attacks through Variance Tuning
Xiaosen Wang
Kun He
AAML
65
389
0
29 Mar 2021
Admix: Enhancing the Transferability of Adversarial Attacks
Xiaosen Wang
Xu He
Jingdong Wang
Kun He
AAML
95
199
0
31 Jan 2021
Patch-wise++ Perturbation for Adversarial Targeted Attacks
Lianli Gao
Qilong Zhang
Jingkuan Song
Heng Tao Shen
AAML
51
17
0
31 Dec 2020
On Success and Simplicity: A Second Look at Transferable Targeted Attacks
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
72
123
0
21 Dec 2020
Do Wider Neural Networks Really Help Adversarial Robustness?
Boxi Wu
Jinghui Chen
Deng Cai
Xiaofei He
Quanquan Gu
AAML
30
95
0
03 Oct 2020
Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks
Jiadong Lin
Chuanbiao Song
Kun He
Liwei Wang
John E. Hopcroft
AAML
54
562
0
17 Aug 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
57
544
0
09 Jun 2019
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
Yandong Li
Lijun Li
Liqiang Wang
Tong Zhang
Boqing Gong
AAML
44
245
0
01 May 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
71
836
0
05 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
96
2,018
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
94
2,525
0
24 Jan 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
951
93,936
0
11 Oct 2018
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
John E. Hopcroft
AAML
OOD
66
131
0
01 Oct 2018
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
78
1,108
0
19 Mar 2018
Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial Examples
Zihao Liu
Qi Liu
Tao Liu
Nuo Xu
Xue Lin
Yanzhi Wang
Wujie Wen
AAML
MQ
33
260
0
14 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
159
3,171
0
01 Feb 2018
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
76
879
0
08 Dec 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
84
1,050
0
06 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
227
11,962
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
165
2,712
0
19 May 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
56
1,254
0
04 Apr 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
120
1,727
0
08 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
168
8,513
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
491
5,878
0
08 Jul 2016
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
312
37,704
0
20 May 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
291
14,196
0
23 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
49
3,660
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
478
27,231
0
02 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
66
3,947
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
95
4,878
0
14 Nov 2015
Fast R-CNN
Ross B. Girshick
ObjD
277
24,976
0
30 Apr 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
163
18,922
0
20 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.1K
39,383
0
01 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
166
14,831
1
21 Dec 2013
1