ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.09720
19
6

Few-Shot Visual Grounding for Natural Human-Robot Interaction

17 March 2021
Georgios Tziafas
S. Kasaei
ArXivPDFHTML
Abstract

Natural Human-Robot Interaction (HRI) is one of the key components for service robots to be able to work in human-centric environments. In such dynamic environments, the robot needs to understand the intention of the user to accomplish a task successfully. Towards addressing this point, we propose a software architecture that segments a target object from a crowded scene, indicated verbally by a human user. At the core of our system, we employ a multi-modal deep neural network for visual grounding. Unlike most grounding methods that tackle the challenge using pre-trained object detectors via a two-stepped process, we develop a single stage zero-shot model that is able to provide predictions in unseen data. We evaluate the performance of the proposed model on real RGB-D data collected from public scene datasets. Experimental results showed that the proposed model performs well in terms of accuracy and speed, while showcasing robustness to variation in the natural language input.

View on arXiv
Comments on this paper