ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.08590
  4. Cited By
Interpretability of a Deep Learning Model in the Application of Cardiac
  MRI Segmentation with an ACDC Challenge Dataset

Interpretability of a Deep Learning Model in the Application of Cardiac MRI Segmentation with an ACDC Challenge Dataset

15 March 2021
Adrianna Janik
J. Dodd
Georgiana Ifrim
Kris Sankaran
Kathleen M. Curran
ArXivPDFHTML

Papers citing "Interpretability of a Deep Learning Model in the Application of Cardiac MRI Segmentation with an ACDC Challenge Dataset"

5 / 5 papers shown
Title
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and
  Beyond: A Survey
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey
Rokas Gipiškis
Chun-Wei Tsai
Olga Kurasova
61
5
0
02 May 2024
ClaSP -- Parameter-free Time Series Segmentation
ClaSP -- Parameter-free Time Series Segmentation
Arik Ermshaus
Patrick Schäfer
Ulf Leser
AI4TS
25
33
0
28 Jul 2022
Transparency of Deep Neural Networks for Medical Image Analysis: A
  Review of Interpretability Methods
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
18
302
0
01 Nov 2021
Optimising Knee Injury Detection with Spatial Attention and Validating
  Localisation Ability
Optimising Knee Injury Detection with Spatial Attention and Validating Localisation Ability
Niamh Belton
I. Welaratne
Adil Dahlan
Ron Hearne
Misgina Tsighe Hagos
Aonghus Lawlor
Kathleen M. Curran
13
13
0
18 Aug 2021
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,684
0
28 Feb 2017
1