Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.08265
Cited By
Constant Random Perturbations Provide Adversarial Robustness with Minimal Effect on Accuracy
15 March 2021
Bronya R. Chernyak
Bhiksha Raj
Tamir Hazan
Joseph Keshet
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Constant Random Perturbations Provide Adversarial Robustness with Minimal Effect on Accuracy"
28 / 28 papers shown
Title
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
Chen Zhu
Yu Cheng
Zhe Gan
S. Sun
Tom Goldstein
Jingjing Liu
AAML
251
438
0
25 Sep 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
D. Song
OOD
SSL
31
940
0
28 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
57
544
0
09 Jun 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
John E. Hopcroft
Liwei Wang
57
156
0
03 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
90
752
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
52
333
0
31 May 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
64
170
0
28 May 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
57
75
0
25 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
94
2,018
0
08 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
58
319
0
29 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
94
2,525
0
24 Jan 2019
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
76
907
0
09 Dec 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
71
1,772
0
30 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
114
786
0
30 Apr 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
74
931
0
09 Feb 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
208
11,962
0
19 Jun 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
109
800
0
28 Apr 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
489
5,868
0
08 Jul 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
241
7,951
0
23 May 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
44
3,656
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
57
3,947
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
90
4,878
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
45
3,061
0
14 Nov 2015
Analysis of classifiers' robustness to adversarial perturbations
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
65
361
0
09 Feb 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
158
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
157
14,831
1
21 Dec 2013
Robustness and Generalization
Huan Xu
Shie Mannor
OOD
158
459
0
13 May 2010
1