ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.06471
  4. Cited By
Causal inference with misspecified exposure mappings: separating
  definitions and assumptions

Causal inference with misspecified exposure mappings: separating definitions and assumptions

11 March 2021
Fredrik Savje
    CML
ArXivPDFHTML

Papers citing "Causal inference with misspecified exposure mappings: separating definitions and assumptions"

11 / 11 papers shown
Title
Bayesian Estimation of Causal Effects Using Proxies of a Latent Interference Network
Bayesian Estimation of Causal Effects Using Proxies of a Latent Interference Network
Bar Weinstein
Daniel Nevo
CML
23
0
0
13 May 2025
Local Interference: Removing Interference Bias in Semi-Parametric Causal Models
Local Interference: Removing Interference Bias in Semi-Parametric Causal Models
Michael O'Riordan
Ciarán M. Gilligan-Lee
CML
41
0
0
24 Mar 2025
Kernel-based estimators for functional causal effects
Yordan P. Raykov
Hengrui Luo
Justin Strait
Wasiur R. KhudaBukhsh
CML
55
0
0
06 Mar 2025
On the admissibility of Horvitz-Thompson estimator for estimating causal
  effects under network interference
On the admissibility of Horvitz-Thompson estimator for estimating causal effects under network interference
Vishesh Karwa
E. Airoldi
CML
26
0
0
02 Dec 2023
Safe and Interpretable Estimation of Optimal Treatment Regimes
Safe and Interpretable Estimation of Optimal Treatment Regimes
Harsh Parikh
Quinn Lanners
Zade Akras
Sahar F. Zafar
M. P. M. Brandon Westover
Cynthia Rudin
A. Volfovsky
OffRL
6
1
0
23 Oct 2023
A Two-Part Machine Learning Approach to Characterizing Network
  Interference in A/B Testing
A Two-Part Machine Learning Approach to Characterizing Network Interference in A/B Testing
Yuan. Yuan
Kristen M. Altenburger
29
4
0
18 Aug 2023
Neighborhood Adaptive Estimators for Causal Inference under Network Interference
Neighborhood Adaptive Estimators for Causal Inference under Network Interference
A. Belloni
Fei Fang
A. Volfovsky
CML
46
6
0
07 Dec 2022
A Design-Based Riesz Representation Framework for Randomized Experiments
A Design-Based Riesz Representation Framework for Randomized Experiments
Christopher Harshaw
Fredrik Sävje
Yitan Wang
CML
27
7
0
17 Oct 2022
The Local Approach to Causal Inference under Network Interference
The Local Approach to Causal Inference under Network Interference
Eric Auerbach
Max Tabord-Meehan
Max Tabord-Meehan
CML
20
22
0
09 May 2021
Design and Analysis of Bipartite Experiments under a Linear
  Exposure-Response Model
Design and Analysis of Bipartite Experiments under a Linear Exposure-Response Model
Christopher Harshaw
Fredrik Sävje
David Eisenstat
Vahab Mirrokni
Jean Pouget-Abadie
38
34
0
11 Mar 2021
Causal inference for social network data
Causal inference for social network data
Elizabeth L. Ogburn
Oleg Sofrygin
Iván Díaz
M. J. van der Laan
CML
12
109
0
23 May 2017
1