ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.04902
  4. Cited By
Stochasticity helps to navigate rough landscapes: comparing
  gradient-descent-based algorithms in the phase retrieval problem

Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem

8 March 2021
Francesca Mignacco
Pierfrancesco Urbani
Lenka Zdeborová
ArXivPDFHTML

Papers citing "Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem"

19 / 19 papers shown
Title
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Vittorio Erba
Emanuele Troiani
Luca Biggio
Antoine Maillard
Lenka Zdeborová
91
1
0
24 Oct 2024
Optimal Combination of Linear and Spectral Estimators for Generalized
  Linear Models
Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models
Marco Mondelli
Christos Thrampoulidis
R. Venkataramanan
35
16
0
07 Aug 2020
Optimization and Generalization of Shallow Neural Networks with
  Quadratic Activation Functions
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
19
46
0
27 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
70
94
0
15 Jun 2020
Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow
  in Phase Retrieval
Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow in Phase Retrieval
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
20
28
0
12 Jun 2020
Dynamical mean-field theory for stochastic gradient descent in Gaussian
  mixture classification
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
34
67
0
10 Jun 2020
Generalisation error in learning with random features and the hidden
  manifold model
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
43
168
0
21 Feb 2020
Poly-time universality and limitations of deep learning
Poly-time universality and limitations of deep learning
Emmanuel Abbe
Colin Sandon
16
23
0
07 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
77
925
0
04 Dec 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves
  Non-smooth, Non-convex Phase Retrieval
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
39
35
0
28 Oct 2019
Bad Global Minima Exist and SGD Can Reach Them
Bad Global Minima Exist and SGD Can Reach Them
Shengchao Liu
Dimitris Papailiopoulos
D. Achlioptas
38
80
0
06 Jun 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural
  Networks
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
62
241
0
18 Jan 2019
Gradient Descent with Random Initialization: Fast Global Convergence for
  Nonconvex Phase Retrieval
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
37
235
0
21 Mar 2018
Optimization-based AMP for Phase Retrieval: The Impact of Initialization
  and $\ell_2$-regularization
Optimization-based AMP for Phase Retrieval: The Impact of Initialization and ℓ2\ell_2ℓ2​-regularization
Junjie Ma
Ji Xu
A. Maleki
58
53
0
03 Jan 2018
Three Factors Influencing Minima in SGD
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
53
458
0
13 Nov 2017
Fundamental Limits of Weak Recovery with Applications to Phase Retrieval
Fundamental Limits of Weak Recovery with Applications to Phase Retrieval
Marco Mondelli
Andrea Montanari
49
119
0
20 Aug 2017
Optimal Errors and Phase Transitions in High-Dimensional Generalized
  Linear Models
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
55
262
0
10 Aug 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
335
2,913
0
15 Sep 2016
Stochastic modified equations and adaptive stochastic gradient
  algorithms
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
47
282
0
19 Nov 2015
1