Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04902
Cited By
Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem
8 March 2021
Francesca Mignacco
Pierfrancesco Urbani
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem"
19 / 19 papers shown
Title
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Vittorio Erba
Emanuele Troiani
Luca Biggio
Antoine Maillard
Lenka Zdeborová
91
1
0
24 Oct 2024
Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models
Marco Mondelli
Christos Thrampoulidis
R. Venkataramanan
35
16
0
07 Aug 2020
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
19
46
0
27 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
70
94
0
15 Jun 2020
Complex Dynamics in Simple Neural Networks: Understanding Gradient Flow in Phase Retrieval
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
20
28
0
12 Jun 2020
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
34
67
0
10 Jun 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
43
168
0
21 Feb 2020
Poly-time universality and limitations of deep learning
Emmanuel Abbe
Colin Sandon
16
23
0
07 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
77
925
0
04 Dec 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
39
35
0
28 Oct 2019
Bad Global Minima Exist and SGD Can Reach Them
Shengchao Liu
Dimitris Papailiopoulos
D. Achlioptas
38
80
0
06 Jun 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
62
241
0
18 Jan 2019
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
37
235
0
21 Mar 2018
Optimization-based AMP for Phase Retrieval: The Impact of Initialization and
ℓ
2
\ell_2
ℓ
2
-regularization
Junjie Ma
Ji Xu
A. Maleki
58
53
0
03 Jan 2018
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
53
458
0
13 Nov 2017
Fundamental Limits of Weak Recovery with Applications to Phase Retrieval
Marco Mondelli
Andrea Montanari
49
119
0
20 Aug 2017
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
55
262
0
10 Aug 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
335
2,913
0
15 Sep 2016
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
47
282
0
19 Nov 2015
1