Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04244
Cited By
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
7 March 2021
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications"
16 / 16 papers shown
Title
Investigating the Duality of Interpretability and Explainability in Machine Learning
Moncef Garouani
Josiane Mothe
Ayah Barhrhouj
Julien Aligon
AAML
42
2
0
27 Mar 2025
TagGAN: A Generative Model for Data Tagging
Muhammad Nawaz
Basma Nasir
Tehseen Zia
Zawar Hussain
Catarina Moreira
GAN
MedIm
42
0
0
25 Feb 2025
What If We Had Used a Different App? Reliable Counterfactual KPI Analysis in Wireless Systems
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
Guanding Yu
Osvaldo Simeone
27
1
0
30 Sep 2024
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
...
Michael Gerovitch
David Bau
Max Tegmark
David M. Krueger
Dylan Hadfield-Menell
AAML
34
78
0
25 Jan 2024
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
26
0
0
29 Sep 2022
Measuring Interventional Robustness in Reinforcement Learning
Katherine Avery
Jack Kenney
Pracheta Amaranath
Erica Cai
David D. Jensen
21
0
0
19 Sep 2022
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
CML
42
109
0
23 May 2022
Let's Go to the Alien Zoo: Introducing an Experimental Framework to Study Usability of Counterfactual Explanations for Machine Learning
Ulrike Kuhl
André Artelt
Barbara Hammer
32
17
0
06 May 2022
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
27
22
0
21 Apr 2022
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
Md. Naimul Hoque
Klaus Mueller
CML
51
30
0
03 Jan 2021
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Renuka Sindhgatta
P. Bruza
36
57
0
21 Jul 2020
What is "Intelligent" in Intelligent User Interfaces? A Meta-Analysis of 25 Years of IUI
Sarah Theres Volkel
Christina Schneegass
Malin Eiband
Daniel Buschek
20
41
0
06 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1