Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04047
Cited By
Reinforcement Learning, Bit by Bit
6 March 2021
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reinforcement Learning, Bit by Bit"
20 / 20 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
92
0
0
29 Apr 2025
Value of Information and Reward Specification in Active Inference and POMDPs
Ran Wei
49
3
0
13 Aug 2024
Three Dogmas of Reinforcement Learning
David Abel
Mark K. Ho
A. Harutyunyan
38
5
0
15 Jul 2024
Information-Theoretic Foundations for Neural Scaling Laws
Hong Jun Jeon
Benjamin Van Roy
19
1
0
28 Jun 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
23
6
0
05 Feb 2024
An Invitation to Deep Reinforcement Learning
Bernhard Jaeger
Andreas Geiger
OffRL
OOD
78
5
0
13 Dec 2023
A Definition of Continual Reinforcement Learning
David Abel
André Barreto
Benjamin Van Roy
Doina Precup
H. V. Hasselt
Satinder Singh
CLL
20
73
0
20 Jul 2023
On the Convergence of Bounded Agents
David Abel
André Barreto
Hado van Hasselt
Benjamin Van Roy
Doina Precup
Satinder Singh
20
4
0
20 Jul 2023
Continual Learning as Computationally Constrained Reinforcement Learning
Saurabh Kumar
Henrik Marklund
Anand Srinivasa Rao
Yifan Zhu
Hong Jun Jeon
Yueyang Liu
Benjamin Van Roy
CLL
27
22
0
10 Jul 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
34
8
0
05 May 2023
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
7
0
28 Jan 2023
On learning history based policies for controlling Markov decision processes
Gandharv Patil
Aditya Mahajan
Doina Precup
OffRL
21
5
0
06 Nov 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
28
4
0
30 Oct 2022
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
31
16
0
27 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
14
19
0
04 May 2022
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Angelos Filos
Eszter Vértes
Zita Marinho
Gregory Farquhar
Diana Borsa
A. Friesen
Feryal M. P. Behbahani
Tom Schaul
André Barreto
Simon Osindero
44
7
0
08 Dec 2021
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
16
12
0
26 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
24
21
0
09 Oct 2021
Learning and Information in Stochastic Networks and Queues
N. Walton
Kuang Xu
6
20
0
18 May 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
120
166
0
06 Jan 2021
1