ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.03000
  4. Cited By
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier
  Domain

SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain

4 March 2021
P. Harder
Franz-Josef Pfreundt
M. Keuper
J. Keuper
    AAML
ArXivPDFHTML

Papers citing "SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain"

12 / 12 papers shown
Title
Input Space Mode Connectivity in Deep Neural Networks
Input Space Mode Connectivity in Deep Neural Networks
Jakub Vrabel
Ori Shem-Ur
Yaron Oz
David Krueger
56
1
0
09 Sep 2024
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
Tal Alter
Raz Lapid
Moshe Sipper
AAML
62
6
0
25 Aug 2024
FIMBA: Evaluating the Robustness of AI in Genomics via Feature
  Importance Adversarial Attacks
FIMBA: Evaluating the Robustness of AI in Genomics via Feature Importance Adversarial Attacks
Heorhii Skovorodnikov
Hoda AlKhzaimi
AAML
30
2
0
19 Jan 2024
Graph-based methods coupled with specific distributional distances for
  adversarial attack detection
Graph-based methods coupled with specific distributional distances for adversarial attack detection
dwight nwaigwe
Lucrezia Carboni
Martial Mermillod
Sophie Achard
M. Dojat
AAML
32
3
0
31 May 2023
An Extended Study of Human-like Behavior under Adversarial Training
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
9
0
22 Mar 2023
Inference Time Evidences of Adversarial Attacks for Forensic on
  Transformers
Inference Time Evidences of Adversarial Attacks for Forensic on Transformers
Hugo Lemarchant
Liang Li
Yiming Qian
Yuta Nakashima
Hajime Nagahara
ViT
AAML
43
0
0
31 Jan 2023
Robust Models are less Over-Confident
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
Attack-Agnostic Adversarial Detection
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
26
0
0
01 Jun 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial
  Robustness?
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?
P. Lorenz
Dominik Strassel
M. Keuper
J. Keuper
AAML
21
10
0
02 Dec 2021
Detecting AutoAttack Perturbations in the Frequency Domain
Detecting AutoAttack Perturbations in the Frequency Domain
P. Lorenz
P. Harder
Dominik Strassel
M. Keuper
J. Keuper
AAML
16
13
0
16 Nov 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
72
22
0
12 Mar 2021
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1