Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.02768
Cited By
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction
4 March 2021
Aniruddh Raghu
John Guttag
K. Young
E. Pomerantsev
Adrian Dalca
Collin M. Stultz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction"
20 / 20 papers shown
Title
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
94
818
0
09 Jul 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
336
10,591
0
17 Feb 2020
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
59
384
0
01 Oct 2019
What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
S. Tonekaboni
Shalmali Joshi
M. Mccradden
Anna Goldenberg
65
391
0
13 May 2019
Unsupervised Deep Learning for Bayesian Brain MRI Segmentation
Adrian Dalca
Evan M. Yu
Polina Golland
Bruce Fischl
M. Sabuncu
Juan Eugenio Iglesias
OOD
41
66
0
25 Apr 2019
Deep neural networks can predict mortality from 12-lead electrocardiogram voltage data
S. Raghunath
Alvaro E. Ulloa Cerna
Linyuan Jing
David P. vanMaanen
Joshua V. Stough
...
B. Delisle
Amro Alsaid
Dominik Beer
C. Haggerty
Brandon K. Fornwalt
35
183
0
15 Apr 2019
Regularizing Black-box Models for Improved Interpretability
Gregory Plumb
Maruan Al-Shedivat
Ángel Alexander Cabrera
Adam Perer
Eric Xing
Ameet Talwalkar
AAML
54
79
0
18 Feb 2019
Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making
Carrie J. Cai
Emily Reif
Narayan Hegde
J. Hipp
Been Kim
...
Martin Wattenberg
F. Viégas
G. Corrado
Martin C. Stumpe
Michael Terry
98
402
0
08 Feb 2019
TED: Teaching AI to Explain its Decisions
Michael Hind
Dennis L. Wei
Murray Campbell
Noel Codella
Amit Dhurandhar
Aleksandra Mojsilović
Karthikeyan N. Ramamurthy
Kush R. Varshney
53
110
0
12 Nov 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
122
940
0
20 Jun 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
199
1,837
0
30 Nov 2017
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
164
588
0
13 Oct 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
73
82
0
29 May 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
967
21,815
0
22 May 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
108
812
0
13 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
293
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
519
15,861
0
12 Nov 2013
1