Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.02762
Cited By
Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things
3 March 2021
Yansong Gao
Minki Kim
Chandra Thapa
Sharif Abuadbba
Zhi-Li Zhang
S. Çamtepe
Hyoungshick Kim
Surya Nepal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things"
21 / 21 papers shown
Title
Communication and Computation Reduction for Split Learning using Asynchronous Training
Xing Chen
Jingtao Li
C. Chakrabarti
37
28
0
20 Jul 2021
Vulnerability Due to Training Order in Split Learning
Harshit Madaan
M. Gawali
V. Kulkarni
Aniruddha Pant
FedML
47
6
0
26 Mar 2021
Advancements of federated learning towards privacy preservation: from federated learning to split learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
FedML
46
86
0
25 Nov 2020
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
73
575
0
25 Apr 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
161
6,226
0
10 Dec 2019
SAFA: a Semi-Asynchronous Protocol for Fast Federated Learning with Low Overhead
A. Masullo
Ligang He
Toby Perrett
Rui Mao
Carsten Maple
Majid Mirmehdi
63
313
0
03 Oct 2019
Detailed comparison of communication efficiency of split learning and federated learning
Abhishek Singh
Praneeth Vepakomma
O. Gupta
Ramesh Raskar
FedML
46
189
0
18 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
96
4,496
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
127
2,326
0
04 Jul 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
127
18,049
0
28 May 2019
1D Convolutional Neural Networks and Applications: A Survey
S. Kiranyaz
Onur Avcı
Osama Abdeljaber
T. Ince
Moncef Gabbouj
D. Inman
3DV
55
1,913
0
09 May 2019
Patient Clustering Improves Efficiency of Federated Machine Learning to predict mortality and hospital stay time using distributed Electronic Medical Records
Li Huang
Dianbo Liu
OOD
FedML
58
367
0
22 Mar 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
101
2,660
0
04 Feb 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
107
5,146
0
14 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
52
100
0
08 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
113
702
0
03 Dec 2018
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
52
603
0
14 Oct 2018
DÏoT: A Federated Self-learning Anomaly Detection System for IoT
T. D. Nguyen
Samuel Marchal
Markus Miettinen
Hossein Fereidooni
Nadarajah Asokan
A. Sadeghi
122
491
0
20 Apr 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,781
0
17 Apr 2017
Adversary Resistant Deep Neural Networks with an Application to Malware Detection
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
C. Lee Giles
Xue Liu
AAML
57
174
0
05 Oct 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
276
17,399
0
17 Feb 2016
1