ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.02477
  4. Cited By
Regularizing towards Causal Invariance: Linear Models with Proxies

Regularizing towards Causal Invariance: Linear Models with Proxies

3 March 2021
Michael Oberst
Nikolaj Thams
J. Peters
David Sontag
    OOD
ArXivPDFHTML

Papers citing "Regularizing towards Causal Invariance: Linear Models with Proxies"

19 / 19 papers shown
Title
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Yiyuan Yang
Guodong Long
Tianyi Zhou
Qinghua Lu
Shanshan Ye
Jing Jiang
OODD
168
1
0
02 May 2025
Revisiting Spurious Correlation in Domain Generalization
Revisiting Spurious Correlation in Domain Generalization
Bin Qin
Jiangmeng Li
Yi Li
Xuesong Wu
Yupeng Wang
Wenwen Qiang
Jianwen Cao
CML
42
1
0
17 Jun 2024
Proxy Methods for Domain Adaptation
Proxy Methods for Domain Adaptation
Katherine Tsai
Stephen R. Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander DÁmour
Oluwasanmi Koyejo
Arthur Gretton
OOD
29
2
0
12 Mar 2024
Invariant Learning via Probability of Sufficient and Necessary Causes
Invariant Learning via Probability of Sufficient and Necessary Causes
Mengyue Yang
Zhen Fang
Yonggang Zhang
Yali Du
Furui Liu
Jean-François Ton
Jianhong Wang
Jun Wang
OODD
32
13
0
22 Sep 2023
Causal Information Splitting: Engineering Proxy Features for Robustness
  to Distribution Shifts
Causal Information Splitting: Engineering Proxy Features for Robustness to Distribution Shifts
Bijan Mazaheri
Atalanti Mastakouri
Dominik Janzing
Mila Hardt
OOD
33
3
0
10 May 2023
Exploiting Personalized Invariance for Better Out-of-distribution
  Generalization in Federated Learning
Exploiting Personalized Invariance for Better Out-of-distribution Generalization in Federated Learning
Xueyang Tang
Song Guo
Jie M. Zhang
FedML
OODD
OOD
36
3
0
21 Nov 2022
Nonlinear Causal Discovery via Kernel Anchor Regression
Nonlinear Causal Discovery via Kernel Anchor Regression
Wenqi Shi
Wenkai Xu
CML
BDL
11
0
0
30 Oct 2022
Learning from a Biased Sample
Learning from a Biased Sample
Roshni Sahoo
Lihua Lei
Stefan Wager
19
17
0
05 Sep 2022
Image-based Treatment Effect Heterogeneity
Image-based Treatment Effect Heterogeneity
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
26
20
0
13 Jun 2022
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Nikolaj Thams
Michael Oberst
David Sontag
OOD
38
10
0
31 May 2022
An Empirical Study on Distribution Shift Robustness From the Perspective
  of Pre-Training and Data Augmentation
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
Ziquan Liu
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
Xiangyang Ji
Antoni B. Chan
OOD
45
14
0
25 May 2022
Causal Domain Adaptation with Copula Entropy based Conditional
  Independence Test
Causal Domain Adaptation with Copula Entropy based Conditional Independence Test
Jian Ma
TTA
OOD
CML
10
0
0
27 Feb 2022
CausPref: Causal Preference Learning for Out-of-Distribution
  Recommendation
CausPref: Causal Preference Learning for Out-of-Distribution Recommendation
Yue He
Zimu Wang
Peng Cui
Hao Zou
Yafeng Zhang
Qiang Cui
Yong-jia Jiang
OOD
CML
OODD
22
54
0
08 Feb 2022
Beyond Discriminant Patterns: On the Robustness of Decision Rule
  Ensembles
Beyond Discriminant Patterns: On the Robustness of Decision Rule Ensembles
Xin Du
S. Ramamoorthy
W. Duivesteijn
Jin Tian
Mykola Pechenizkiy
17
3
0
21 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
49
515
0
31 Aug 2021
Invariant Policy Learning: A Causal Perspective
Invariant Policy Learning: A Causal Perspective
Sorawit Saengkyongam
Nikolaj Thams
J. Peters
Niklas Pfister
CML
OffRL
19
13
0
01 Jun 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
196
125
0
04 Jan 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
A Unifying Causal Framework for Analyzing Dataset Shift-stable Learning
  Algorithms
A Unifying Causal Framework for Analyzing Dataset Shift-stable Learning Algorithms
Adarsh Subbaswamy
Bryant Chen
S. Saria
OOD
11
18
0
27 May 2019
1