ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.02351
  4. Cited By
Critical Parameters for Scalable Distributed Learning with Large Batches
  and Asynchronous Updates

Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates

3 March 2021
Sebastian U. Stich
Amirkeivan Mohtashami
Martin Jaggi
ArXivPDFHTML

Papers citing "Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates"

11 / 11 papers shown
Title
Ordered Momentum for Asynchronous SGD
Ordered Momentum for Asynchronous SGD
Chang-Wei Shi
Yi-Rui Yang
Wu-Jun Li
ODL
67
0
0
27 Jul 2024
Asynchronous Federated Stochastic Optimization for Heterogeneous
  Objectives Under Arbitrary Delays
Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
Charikleia Iakovidou
Kibaek Kim
FedML
40
2
0
16 May 2024
Asynchronous Federated Learning with Bidirectional Quantized
  Communications and Buffered Aggregation
Asynchronous Federated Learning with Bidirectional Quantized Communications and Buffered Aggregation
Tomàs Ortega
Hamid Jafarkhani
FedML
41
6
0
01 Aug 2023
PersA-FL: Personalized Asynchronous Federated Learning
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
62
6
0
03 Oct 2022
Characterizing & Finding Good Data Orderings for Fast Convergence of
  Sequential Gradient Methods
Characterizing & Finding Good Data Orderings for Fast Convergence of Sequential Gradient Methods
Amirkeivan Mohtashami
Sebastian U. Stich
Martin Jaggi
26
13
0
03 Feb 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free
  Optimization
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
32
1
0
30 Sep 2021
Layered gradient accumulation and modular pipeline parallelism: fast and
  efficient training of large language models
Layered gradient accumulation and modular pipeline parallelism: fast and efficient training of large language models
J. Lamy-Poirier
MoE
29
8
0
04 Jun 2021
Consensus Control for Decentralized Deep Learning
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
19
76
0
09 Feb 2021
New Convergence Aspects of Stochastic Gradient Algorithms
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
33
66
0
10 Nov 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
312
2,896
0
15 Sep 2016
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
186
683
0
07 Dec 2010
1