ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01678
  4. Cited By
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)

Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)

2 March 2021
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
    GAN
ArXivPDFHTML

Papers citing "Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)"

36 / 36 papers shown
Title
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
180
0
0
10 Oct 2024
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
273
30,109
0
01 Mar 2022
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
231
271
0
18 Apr 2021
Implicit competitive regularization in GANs
Implicit competitive regularization in GANs
Florian Schäfer
Hongkai Zheng
Anima Anandkumar
GAN
33
35
0
13 Oct 2019
Learning with minibatch Wasserstein : asymptotic and gradient properties
Learning with minibatch Wasserstein : asymptotic and gradient properties
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
56
96
0
09 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
39
25
0
09 Oct 2019
On the estimation of the Wasserstein distance in generative models
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
46
9
0
02 Oct 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GAN
OT
38
17
0
08 Jun 2019
Wasserstein GAN Can Perform PCA
Wasserstein GAN Can Perform PCA
Jaewoong Cho
Changho Suh
GAN
39
5
0
25 Feb 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
42
15
0
10 Feb 2019
Subspace Robust Wasserstein Distances
Subspace Robust Wasserstein Distances
François-Pierre Paty
Marco Cuturi
149
155
0
25 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
572
10,555
0
12 Dec 2018
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
322
0
13 Nov 2018
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
58
527
0
18 Oct 2018
Sample Complexity of Sinkhorn divergences
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
75
288
0
05 Oct 2018
Adversarial Regularizers in Inverse Problems
Adversarial Regularizers in Inverse Problems
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
GAN
MedIm
84
220
0
29 May 2018
Generative Modeling using the Sliced Wasserstein Distance
Generative Modeling using the Sliced Wasserstein Distance
Ishani Deshpande
Ziyu Zhang
Alex Schwing
GAN
55
226
0
29 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
217
2,147
0
01 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,437
0
16 Feb 2018
Deep Image Prior
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
122
3,151
0
29 Nov 2017
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
60
1,011
0
28 Nov 2017
Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At
  Every Step
Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step
W. Fedus
Mihaela Rosca
Balaji Lakshminarayanan
Andrew M. Dai
S. Mohamed
Ian Goodfellow
GAN
58
211
0
23 Oct 2017
A Geometric View of Optimal Transportation and Generative Model
A Geometric View of Optimal Transportation and Generative Model
Na Lei
Kehua Su
Li-min Cui
S. Yau
X. Gu
GAN
OT
49
134
0
16 Oct 2017
Sharp asymptotic and finite-sample rates of convergence of empirical
  measures in Wasserstein distance
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
189
421
0
01 Jul 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
173
629
0
01 Jun 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
74
344
0
30 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
201
9,546
0
31 Mar 2017
BEGAN: Boundary Equilibrium Generative Adversarial Networks
BEGAN: Boundary Equilibrium Generative Adversarial Networks
David Berthelot
Tom Schumm
Luke Metz
GAN
100
1,154
0
31 Mar 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
81
2,106
0
17 Jan 2017
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
329
4,573
0
13 Nov 2016
Inductive Bias of Deep Convolutional Networks through Pooling Geometry
Inductive Bias of Deep Convolutional Networks through Pooling Geometry
Nadav Cohen
Amnon Shashua
58
134
0
22 May 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
253
14,008
0
19 Nov 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
241
8,402
0
28 Nov 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,525
0
01 Sep 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
215
4,262
0
04 Jun 2013
Learning Probability Measures with respect to Optimal Transport Metrics
Learning Probability Measures with respect to Optimal Transport Metrics
Guillermo D. Cañas
Lorenzo Rosasco
OT
85
100
0
05 Sep 2012
1