Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01516
Cited By
Private Stochastic Convex Optimization: Optimal Rates in
ℓ
1
\ell_1
ℓ
1
Geometry
2 March 2021
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$ Geometry"
20 / 20 papers shown
Title
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
180
0
0
10 Oct 2024
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Xiaogang Xu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
48
1
0
19 Aug 2024
Private Online Learning via Lazy Algorithms
Hilal Asi
Tomer Koren
Daogao Liu
Kunal Talwar
109
0
0
05 Jun 2024
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
33
3
0
31 Mar 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
27
12
0
20 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
ReSQueing Parallel and Private Stochastic Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Y. Lee
Daogao Liu
Aaron Sidford
Kevin Tian
FedML
28
12
0
01 Jan 2023
Optimal Algorithms for Stochastic Complementary Composite Minimization
Alexandre d’Aspremont
Cristóbal Guzmán
Clément Lezane
33
3
0
03 Nov 2022
Private optimization in the interpolation regime: faster rates and hardness results
Hilal Asi
Karan N. Chadha
Gary Cheng
John C. Duchi
47
5
0
31 Oct 2022
Private Online Prediction from Experts: Separations and Faster Rates
Hilal Asi
Vitaly Feldman
Tomer Koren
Kunal Talwar
FedML
32
18
0
24 Oct 2022
Uniform Stability for First-Order Empirical Risk Minimization
Amit Attia
Tomer Koren
20
5
0
17 Jul 2022
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
34
58
0
01 Jul 2022
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
26
17
0
21 Jun 2022
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
Private Adaptive Gradient Methods for Convex Optimization
Hilal Asi
John C. Duchi
Alireza Fallah
O. Javidbakht
Kunal Talwar
19
53
0
25 Jun 2021
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
24
29
0
17 Jun 2021
The Power of Sampling: Dimension-free Risk Bounds in Private ERM
Yin Tat Lee
Daogao Liu
Zhou Lu
22
3
0
28 May 2021
Non-Euclidean Differentially Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Raef Bassily
Cristóbal Guzmán
Anupama Nandi
54
66
0
01 Mar 2021
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
128
259
0
10 Dec 2012
1