Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01400
Cited By
Smoothness Analysis of Adversarial Training
2 March 2021
Sekitoshi Kanai
Masanori Yamada
Hiroshi Takahashi
Yuki Yamanaka
Yasutoshi Ida
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Smoothness Analysis of Adversarial Training"
29 / 29 papers shown
Title
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
100
9
0
05 Feb 2021
Regret Bounds without Lipschitz Continuity: Online Learning with Relative-Lipschitz Losses
Yihan Zhou
V. S. Portella
Mark Schmidt
Nicholas J. A. Harvey
18
21
0
22 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
80
109
0
05 Oct 2020
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
159
1,323
0
03 Oct 2020
S-SGD: Symmetrical Stochastic Gradient Descent with Weight Noise Injection for Reaching Flat Minima
Wonyong Sung
Iksoo Choi
Jinhwan Park
Seokhyun Choi
Sungho Shin
ODL
32
7
0
05 Sep 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
75
81
0
15 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
189
1,821
0
03 Mar 2020
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
56
307
0
04 Jul 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
96
752
0
31 May 2019
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle
Dinghuai Zhang
Tianyuan Zhang
Yiping Lu
Zhanxing Zhu
Bin Dong
AAML
91
359
0
02 May 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
96
2,018
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
94
2,525
0
24 Jan 2019
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Logan Engstrom
Andrew Ilyas
Anish Athalye
AAML
50
141
0
26 Jul 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
78
301
0
12 Feb 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
232
1,873
0
28 Dec 2017
Improving Generalization Performance by Switching from Adam to SGD
N. Keskar
R. Socher
ODL
64
522
0
20 Dec 2017
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
67
459
0
13 Nov 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
132
1,245
0
27 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
227
11,962
0
19 Jun 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
112
800
0
28 Apr 2017
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
98
766
0
15 Mar 2017
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
84
769
0
06 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
448
3,124
0
04 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
355
2,922
0
15 Sep 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
263
7,951
0
23 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
45
3,061
0
14 Nov 2015
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
94
1,234
0
03 Sep 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
163
18,922
0
20 Dec 2014
1