ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.01374
  4. Cited By
A Kernel Framework to Quantify a Model's Local Predictive Uncertainty
  under Data Distributional Shifts

A Kernel Framework to Quantify a Model's Local Predictive Uncertainty under Data Distributional Shifts

2 March 2021
Rishabh Singh
José C. Príncipe
    UQCV
ArXivPDFHTML

Papers citing "A Kernel Framework to Quantify a Model's Local Predictive Uncertainty under Data Distributional Shifts"

2 / 2 papers shown
Title
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1