ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.00543
  4. Cited By
On the Utility of Gradient Compression in Distributed Training Systems

On the Utility of Gradient Compression in Distributed Training Systems

28 February 2021
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
ArXivPDFHTML

Papers citing "On the Utility of Gradient Compression in Distributed Training Systems"

27 / 27 papers shown
Title
OmniLearn: A Framework for Distributed Deep Learning over Heterogeneous Clusters
OmniLearn: A Framework for Distributed Deep Learning over Heterogeneous Clusters
S. Tyagi
Prateek Sharma
63
0
0
21 Mar 2025
Beyond Throughput and Compression Ratios: Towards High End-to-end
  Utility of Gradient Compression
Beyond Throughput and Compression Ratios: Towards High End-to-end Utility of Gradient Compression
Wenchen Han
S. Vargaftik
Michael Mitzenmacher
Brad Karp
Ran Ben-Basat
35
2
0
01 Jul 2024
Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for
  Boosting Neural Network Training
Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for Boosting Neural Network Training
Zeliang Zhang
Jinyang Jiang
Zhuo Liu
Susan Liang
Yijie Peng
Chenliang Xu
29
0
0
18 Mar 2024
Breaking MLPerf Training: A Case Study on Optimizing BERT
Breaking MLPerf Training: A Case Study on Optimizing BERT
Yongdeok Kim
Jaehyung Ahn
Myeongwoo Kim
Changin Choi
Heejae Kim
...
Xiongzhan Linghu
Jingkun Ma
Lin Chen
Yuehua Dai
Sungjoo Yoo
25
0
0
04 Feb 2024
Flexible Communication for Optimal Distributed Learning over
  Unpredictable Networks
Flexible Communication for Optimal Distributed Learning over Unpredictable Networks
S. Tyagi
Martin Swany
37
1
0
05 Dec 2023
Near-Linear Scaling Data Parallel Training with Overlapping-Aware
  Gradient Compression
Near-Linear Scaling Data Parallel Training with Overlapping-Aware Gradient Compression
Lin Meng
Yuzhong Sun
Weimin Li
34
1
0
08 Nov 2023
CacheGen: KV Cache Compression and Streaming for Fast Language Model
  Serving
CacheGen: KV Cache Compression and Streaming for Fast Language Model Serving
Yuhan Liu
Hanchen Li
Yihua Cheng
Siddhant Ray
Yuyang Huang
...
Ganesh Ananthanarayanan
Michael Maire
Henry Hoffmann
Ari Holtzman
Junchen Jiang
50
41
0
11 Oct 2023
Accelerating Distributed ML Training via Selective Synchronization
Accelerating Distributed ML Training via Selective Synchronization
S. Tyagi
Martin Swany
FedML
29
3
0
16 Jul 2023
Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
  Language Model Finetuning Using Shared Randomness
Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized Language Model Finetuning Using Shared Randomness
E. Zelikman
Qian Huang
Percy Liang
Nick Haber
Noah D. Goodman
62
14
0
16 Jun 2023
Evaluation and Optimization of Gradient Compression for Distributed Deep
  Learning
Evaluation and Optimization of Gradient Compression for Distributed Deep Learning
Lin Zhang
Longteng Zhang
S. Shi
X. Chu
Bo-wen Li
OffRL
23
7
0
15 Jun 2023
Adaptive Message Quantization and Parallelization for Distributed
  Full-graph GNN Training
Adaptive Message Quantization and Parallelization for Distributed Full-graph GNN Training
Borui Wan
Juntao Zhao
Chuan Wu
GNN
14
14
0
02 Jun 2023
Global-QSGD: Practical Floatless Quantization for Distributed Learning
  with Theoretical Guarantees
Global-QSGD: Practical Floatless Quantization for Distributed Learning with Theoretical Guarantees
Jihao Xin
Marco Canini
Peter Richtárik
Samuel Horváth
25
2
0
29 May 2023
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
  Training
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
S. Tyagi
Martin Swany
25
4
0
20 May 2023
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic
  Compression
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic Compression
Minghao Li
Ran Ben-Basat
S. Vargaftik
Chon-In Lao
Ke Xu
Michael Mitzenmacher
Minlan Yu Harvard University
24
15
0
16 Feb 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware
  Communication Compression
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
16
25
0
24 Jan 2023
Does compressing activations help model parallel training?
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
19
5
0
06 Jan 2023
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
31
47
0
13 Oct 2022
ByteComp: Revisiting Gradient Compression in Distributed Training
ByteComp: Revisiting Gradient Compression in Distributed Training
Zhuang Wang
Haibin Lin
Yibo Zhu
T. Ng
11
2
0
28 May 2022
Distributed Learning With Sparsified Gradient Differences
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
21
15
0
05 Feb 2022
FedLite: A Scalable Approach for Federated Learning on
  Resource-constrained Clients
FedLite: A Scalable Approach for Federated Learning on Resource-constrained Clients
Jianyu Wang
Qi
A. S. Rawat
Sashank J. Reddi
Sagar M. Waghmare
Felix X. Yu
Gauri Joshi
FedML
22
22
0
28 Jan 2022
CGX: Adaptive System Support for Communication-Efficient Deep Learning
CGX: Adaptive System Support for Communication-Efficient Deep Learning
I. Markov
Hamidreza Ramezanikebrya
Dan Alistarh
GNN
17
3
0
16 Nov 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
184
411
0
14 Jul 2021
JUWELS Booster -- A Supercomputer for Large-Scale AI Research
JUWELS Booster -- A Supercomputer for Large-Scale AI Research
Stefan Kesselheim
A. Herten
K. Krajsek
J. Ebert
J. Jitsev
...
A. Strube
Roshni Kamath
Martin G. Schultz
M. Riedel
T. Lippert
GNN
23
14
0
30 Jun 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
255
4,777
0
24 Feb 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
67
14
0
16 Feb 2021
An Efficient Statistical-based Gradient Compression Technique for
  Distributed Training Systems
An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems
A. Abdelmoniem
Ahmed Elzanaty
Mohamed-Slim Alouini
Marco Canini
51
74
0
26 Jan 2021
Communication-Efficient Distributed Deep Learning: A Comprehensive
  Survey
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
S. Shi
Wei Wang
Bo-wen Li
Xiaowen Chu
19
48
0
10 Mar 2020
1