Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.00502
Cited By
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
28 February 2021
Zuowei Shen
Haizhao Yang
Shijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Approximation Rate of ReLU Networks in terms of Width and Depth"
22 / 22 papers shown
Title
Learning with Noisy Labels: the Exploration of Error Bounds in Classification
Haixia Liu
Boxiao Li
Can Yang
Yang Wang
31
0
0
28 Jan 2025
Approximation Rate of the Transformer Architecture for Sequence Modeling
Hao Jiang
Qianxiao Li
46
9
0
03 Jan 2025
Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis
Hyunwoo Lee
Hayoung Choi
Hyunju Kim
31
1
0
03 Oct 2024
On the expressiveness and spectral bias of KANs
Yixuan Wang
Jonathan W. Siegel
Ziming Liu
Thomas Y. Hou
32
9
0
02 Oct 2024
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
48
2
0
02 Sep 2024
Neural Networks Trained by Weight Permutation are Universal Approximators
Yongqiang Cai
Gaohang Chen
Zhonghua Qiao
61
1
0
01 Jul 2024
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
Owen Davis
Gianluca Geraci
Mohammad Motamed
33
2
0
10 May 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
Expressivity and Approximation Properties of Deep Neural Networks with ReLU
k
^k
k
Activation
Juncai He
Tong Mao
Jinchao Xu
32
3
0
27 Dec 2023
Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural Network Derivatives
Yahong Yang
Haizhao Yang
Yang Xiang
19
19
0
15 May 2023
Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
Sohom Bhattacharya
Jianqing Fan
Debarghya Mukherjee
26
8
0
12 Feb 2023
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
18
14
0
24 Oct 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
11
6
0
18 Aug 2022
A general approximation lower bound in
L
p
L^p
L
p
norm, with applications to feed-forward neural networks
E. M. Achour
Armand Foucault
Sébastien Gerchinovitz
Franccois Malgouyres
22
7
0
09 Jun 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
68
27
0
27 May 2022
Convergence of Deep Neural Networks with General Activation Functions and Pooling
Wentao Huang
Yuesheng Xu
Haizhang Zhang
MLT
AI4CE
18
0
0
13 May 2022
How do noise tails impact on deep ReLU networks?
Jianqing Fan
Yihong Gu
Wen-Xin Zhou
ODL
30
13
0
20 Mar 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
28
8
0
01 Mar 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Convergence of Deep ReLU Networks
Yuesheng Xu
Haizhang Zhang
21
26
0
27 Jul 2021
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
247
0
09 Jan 2020
1