Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.00500
Cited By
v1
v2 (latest)
Asymptotic Risk of Overparameterized Likelihood Models: Double Descent Theory for Deep Neural Networks
28 February 2021
Ryumei Nakada
Masaaki Imaizumi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Asymptotic Risk of Overparameterized Likelihood Models: Double Descent Theory for Deep Neural Networks"
32 / 32 papers shown
Title
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
84
169
0
29 Sep 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
80
68
0
17 Jun 2020
On the Optimal Weighted
ℓ
2
\ell_2
ℓ
2
Regularization in Overparameterized Linear Regression
Denny Wu
Ji Xu
75
123
0
10 Jun 2020
Triple descent and the two kinds of overfitting: Where & why do they appear?
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
77
80
0
05 Jun 2020
A Brief Prehistory of Double Descent
Marco Loog
T. Viering
A. Mey
Jesse H. Krijthe
David Tax
61
69
0
07 Apr 2020
Regularization in High-Dimensional Regression and Classification via Random Matrix Theory
Panagiotis Lolas
79
14
0
30 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
183
153
0
02 Mar 2020
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang
Yaodong Yu
Chong You
Jacob Steinhardt
Yi-An Ma
76
186
0
26 Feb 2020
Subspace Fitting Meets Regression: The Effects of Supervision and Orthonormality Constraints on Double Descent of Generalization Errors
Yehuda Dar
Paul Mayer
Lorenzo Luzi
Richard G. Baraniuk
132
17
0
25 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
74
83
0
19 Feb 2020
Analytic Study of Double Descent in Binary Classification: The Impact of Loss
Ganesh Ramachandra Kini
Christos Thrampoulidis
84
52
0
30 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
127
945
0
04 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
105
148
0
13 Nov 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
113
639
0
14 Aug 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
113
779
0
26 Jun 2019
Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks
Kenta Oono
Taiji Suzuki
112
58
0
24 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
244
747
0
19 Mar 2019
Two models of double descent for weak features
M. Belkin
Daniel J. Hsu
Ji Xu
121
375
0
18 Mar 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
92
317
0
13 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
254
1,660
0
28 Dec 2018
A jamming transition from under- to over-parametrization affects loss landscape and generalization
S. Spigler
Mario Geiger
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Matthieu Wyart
91
150
0
22 Oct 2018
Just Interpolate: Kernel "Ridgeless" Regression Can Generalize
Tengyuan Liang
Alexander Rakhlin
91
355
0
01 Aug 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
79
89
0
28 May 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
293
3,489
0
09 Mar 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
143
472
0
10 Oct 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
223
1,225
0
26 Jun 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
362
4,638
0
10 Nov 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
High-Dimensional Asymptotics of Prediction: Ridge Regression and Classification
Yan Sun
Stefan Wager
145
289
0
10 Jul 2015
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
292
591
0
27 Feb 2015
An Introduction to Matrix Concentration Inequalities
J. Tropp
178
1,155
0
07 Jan 2015
High Dimensional Robust M-Estimation: Asymptotic Variance via Approximate Message Passing
D. Donoho
Andrea Montanari
243
223
0
28 Oct 2013
1