ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.00358
6
19

A Holistic Motion Planning and Control Solution to Challenge a Professional Racecar Driver

28 February 2021
S. Srinivasan
Sebastian Nicolas Giles
Alexander Liniger
ArXivPDFHTML
Abstract

We present a holistically designed three layer control architecture capable of outperforming a professional driver racing the same car. Our approach focuses on the co-design of the motion planning and control layers, extracting the full potential of the connected system. First, a high-level planner computes an optimal trajectory around the track, then in real-time a mid-level nonlinear model predictive controller follows this path using the high-level information as guidance. Finally a high frequency, low-level controller tracks the states predicted by the mid-level controller. Tracking the predicted behavior has two advantages: it reduces the mismatch between the model used in the upper layers and the real car, and allows for a torque vectoring command to be optimized by the higher level motion planners. The tailored design of the low-level controller proved to be crucial for bridging the gap between planning and control, unlocking unseen performance in autonomous racing. The proposed approach was verified on a full size racecar, considerably improving over the state-of-the-art results achieved on the same vehicle. Finally, we also show that the proposed co-design approach outperforms a professional racecar driver.

View on arXiv
Comments on this paper