Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.00349
Cited By
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
27 February 2021
David Eriksson
M. Jankowiak
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces"
29 / 29 papers shown
Title
Pushing the Limits of the Reactive Affine Shaker Algorithm to Higher Dimensions
R. Battiti
M. Brunato
64
0
0
18 Feb 2025
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
38
2
0
08 Jul 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
63
0
0
24 Jun 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Personalized LLM Response Generation with Parameterized Memory Injection
Kai Zhang
Lizhi Qing
Yangyang Kang
36
11
0
04 Apr 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
32
17
0
03 Feb 2024
Improving sample efficiency of high dimensional Bayesian optimization with MCMC
Zeji Yi
Yunyue Wei
Chu Xin Cheng
Kaibo He
Yanan Sui
22
5
0
05 Jan 2024
A Bayesian approach for prompt optimization in pre-trained language models
Antonio Sabbatella
Andrea Ponti
Antonio Candelieri
I. Giordani
Francesco Archetti
34
1
0
01 Dec 2023
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels
Alexander Shmakov
Avisek Naug
Vineet Gundecha
Sahand Ghorbanpour
Ricardo Luna Gutierrez
Ashwin Ramesh Babu
Antonio Guillen-Perez
Soumyendu Sarkar
29
11
0
05 Oct 2023
High-Dimensional Bayesian Optimization via Semi-Supervised Learning with Optimized Unlabeled Data Sampling
Y. Yin
Yu Wang
Gang Xu
32
4
0
04 May 2023
Network Cascade Vulnerability using Constrained Bayesian Optimization
Albert Y. S. Lam
M. Anitescu
A. Subramanyam
22
0
0
27 Apr 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
21
36
0
22 Apr 2023
Rotation Invariant Quantization for Model Compression
Dor-Joseph Kampeas
Yury Nahshan
Hanoch Kremer
Gil Lederman
Shira Zaloshinski
Zheng Li
E. Haleva
MQ
23
0
0
03 Mar 2023
AutoPEFT: Automatic Configuration Search for Parameter-Efficient Fine-Tuning
Han Zhou
Xingchen Wan
Ivan Vulić
Anna Korhonen
24
45
0
28 Jan 2023
Automatic and effective discovery of quantum kernels
Massimiliano Incudini
Daniele Lizzio Bosco
F. Martini
Michele Grossi
Giuseppe Serra
Alessandra Di Pierro
31
4
0
22 Sep 2022
Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal Classification
Biswadeep Chakraborty
Saibal Mukhopadhyay
31
20
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Investigating Bayesian optimization for expensive-to-evaluate black box functions: Application in fluid dynamics
Mike Diessner
Joseph O’Connor
A. Wynn
S. Laizet
Yu Guan
Kevin J. Wilson
Richard D. Whalley
36
18
0
19 Jul 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
200
0
07 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
27
6
0
19 May 2022
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
Szu Hui Ng
Giulia Pedrielli
22
1
0
16 May 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
Sparse Bayesian Optimization
Sulin Liu
Qing Feng
David Eriksson
Benjamin Letham
E. Bakshy
30
7
0
03 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
55
69
0
28 Jan 2022
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
22
35
0
04 Nov 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
75
110
0
31 Jan 2020
1