Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.13451
Cited By
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
26 February 2021
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout"
50 / 157 papers shown
Title
FedIN: Federated Intermediate Layers Learning for Model Heterogeneity
Yun-Hin Chan
Zhihan Jiang
Jing Deng
Edith C. H. Ngai
FedML
26
1
0
03 Apr 2023
Beyond Accuracy: A Critical Review of Fairness in Machine Learning for Mobile and Wearable Computing
Sofia Yfantidou
Marios Constantinides
Dimitris Spathis
Athena Vakali
Daniele Quercia
F. Kawsar
HAI
FaML
28
18
0
27 Mar 2023
FedGH: Heterogeneous Federated Learning with Generalized Global Header
Liping Yi
Gang Wang
Xiaoguang Liu
Zhuan Shi
Han Yu
FedML
29
71
0
23 Mar 2023
FedLP: Layer-wise Pruning Mechanism for Communication-Computation Efficient Federated Learning
Zheqi Zhu
Yuchen Shi
Jia Luo
Fei-Yue Wang
Chenghui Peng
Pingyi Fan
Khaled B. Letaief
FedML
32
20
0
11 Mar 2023
Complement Sparsification: Low-Overhead Model Pruning for Federated Learning
Xiaopeng Jiang
Cristian Borcea
FedML
26
15
0
10 Mar 2023
Memory-adaptive Depth-wise Heterogenous Federated Learning
Kai Zhang
Yutong Dai
Hongyi Wang
Eric P. Xing
Xun Chen
Lichao Sun
FedML
28
7
0
08 Mar 2023
FLINT: A Platform for Federated Learning Integration
Ewen N. Wang
Ajaykumar Kannan
Yuefeng Liang
Boyi Chen
Mosharaf Chowdhury
40
24
0
24 Feb 2023
AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous Driving
Tianyue Zheng
Ang Li
Zhe Chen
Hao Wang
Jun Luo
26
47
0
17 Feb 2023
Federated Learning with Regularized Client Participation
Grigory Malinovsky
Samuel Horváth
Konstantin Burlachenko
Peter Richtárik
FedML
31
13
0
07 Feb 2023
Topology-aware Federated Learning in Edge Computing: A Comprehensive Survey
Jiajun Wu
Steve Drew
Fan Dong
Zhuangdi Zhu
Jiayu Zhou
FedML
50
46
0
06 Feb 2023
Learning to Linearize Deep Neural Networks for Secure and Efficient Private Inference
Souvik Kundu
Shun Lu
Yuke Zhang
Jacqueline Liu
P. Beerel
8
29
0
23 Jan 2023
Federated Transfer-Ordered-Personalized Learning for Driver Monitoring Application
Liangqi Yuan
Lu Su
Ziran Wang
33
19
0
12 Jan 2023
Recent Advances on Federated Learning: A Systematic Survey
Bingyan Liu
Nuoyan Lv
Yuanchun Guo
Yawen Li
FedML
60
78
0
03 Jan 2023
CC-FedAvg: Computationally Customized Federated Averaging
Hao Zhang
Tingting Wu
Siyao Cheng
Jie Liu
FedML
16
5
0
28 Dec 2022
Federated Learning for Inference at Anytime and Anywhere
Zicheng Liu
Da Li
Javier Fernandez-Marques
Stefanos Laskaridis
Yan Gao
L. Dudziak
Stan Z. Li
S. Hu
Timothy M. Hospedales
FedML
26
5
0
08 Dec 2022
PaDPaF: Partial Disentanglement with Partially-Federated GANs
Abdulla Jasem Almansoori
Samuel Horváth
Martin Takáč
FedML
23
0
0
07 Dec 2022
FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction
Samiul Alam
Luyang Liu
Ming Yan
Mi Zhang
28
147
0
03 Dec 2022
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
33
12
0
31 Oct 2022
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
61
20
0
28 Oct 2022
Exploiting Features and Logits in Heterogeneous Federated Learning
Yun-Hin Chan
Edith C. H. Ngai
FedML
24
2
0
27 Oct 2022
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
42
8
0
19 Oct 2022
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs
Alexandros Kouris
Stylianos I. Venieris
Stefanos Laskaridis
Nicholas D. Lane
42
8
0
27 Sep 2022
Reducing Impacts of System Heterogeneity in Federated Learning using Weight Update Magnitudes
Irene Wang
30
1
0
30 Aug 2022
Federated Learning of Large Models at the Edge via Principal Sub-Model Training
Yue Niu
Saurav Prakash
Souvik Kundu
Sunwoo Lee
Salman Avestimehr
FedML
16
18
0
28 Aug 2022
Lottery Aware Sparsity Hunting: Enabling Federated Learning on Resource-Limited Edge
Sara Babakniya
Souvik Kundu
Saurav Prakash
Yue Niu
Salman Avestimehr
FedML
26
9
0
27 Aug 2022
FedOBD: Opportunistic Block Dropout for Efficiently Training Large-scale Neural Networks through Federated Learning
Yuanyuan Chen
Zichen Chen
Pengcheng Wu
Han Yu
AI4CE
9
18
0
10 Aug 2022
ZeroFL: Efficient On-Device Training for Federated Learning with Local Sparsity
Xinchi Qiu
Javier Fernandez-Marques
Pedro Gusmão
Yan Gao
Titouan Parcollet
Nicholas D. Lane
FedML
50
66
0
04 Aug 2022
FedorAS: Federated Architecture Search under system heterogeneity
L. Dudziak
Stefanos Laskaridis
Javier Fernandez-Marques
FedML
31
7
0
22 Jun 2022
Quantization Robust Federated Learning for Efficient Inference on Heterogeneous Devices
Kartik Gupta
Marios Fournarakis
M. Reisser
Christos Louizos
Markus Nagel
FedML
14
14
0
22 Jun 2022
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
Konstantin Mishchenko
Francis R. Bach
Mathieu Even
Blake E. Woodworth
21
57
0
15 Jun 2022
HideNseek: Federated Lottery Ticket via Server-side Pruning and Sign Supermask
Anish K. Vallapuram
Pengyuan Zhou
Young D. Kwon
Lik Hang Lee
Hengwei Xu
Pan Hui
45
10
0
09 Jun 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
9
5
0
07 Jun 2022
DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training
Rong Dai
Li Shen
Fengxiang He
Xinmei Tian
Dacheng Tao
FedML
13
111
0
01 Jun 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
29
31
0
30 May 2022
A Fair Federated Learning Framework With Reinforcement Learning
Yaqi Sun
Shijing Si
Jianzong Wang
Yuhan Dong
Z. Zhu
Jing Xiao
FedML
13
7
0
26 May 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
25
21
0
27 Apr 2022
A Framework for Verifiable and Auditable Federated Anomaly Detection
G. Santin
Inna Skarbovsky
Fabiana Fournier
Bruno Lepri
FedML
16
1
0
15 Mar 2022
CoCoFL: Communication- and Computation-Aware Federated Learning via Partial NN Freezing and Quantization
Kilian Pfeiffer
Martin Rapp
R. Khalili
J. Henkel
FedML
13
11
0
10 Mar 2022
FLAME: Federated Learning Across Multi-device Environments
Hyunsung Cho
Akhil Mathur
F. Kawsar
16
21
0
17 Feb 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
40
18
0
07 Feb 2022
FedLite: A Scalable Approach for Federated Learning on Resource-constrained Clients
Jianyu Wang
Qi
A. S. Rawat
Sashank J. Reddi
Sagar M. Waghmare
Felix X. Yu
Gauri Joshi
FedML
22
22
0
28 Jan 2022
Minimax Demographic Group Fairness in Federated Learning
Afroditi Papadaki
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
Miguel R. D. Rodrigues
FaML
FedML
16
43
0
20 Jan 2022
FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients
Jaemin Shin
Yuanchun Li
Yunxin Liu
Sung-Ju Lee
FedML
17
73
0
05 Jan 2022
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems
Martin Rapp
R. Khalili
Kilian Pfeiffer
J. Henkel
19
18
0
16 Dec 2021
SPATL: Salient Parameter Aggregation and Transfer Learning for Heterogeneous Clients in Federated Learning
Sixing Yu
P. Nguyen
Waqwoya Abebe
Wei Qian
Ali Anwar
Ali Jannesari
FedML
35
20
0
29 Nov 2021
Personalized Federated Learning through Local Memorization
Othmane Marfoq
Giovanni Neglia
Laetitia Kameni
Richard Vidal
FedML
27
87
0
17 Nov 2021
Towards Fairness-Aware Federated Learning
Yuxin Shi
Han Yu
Cyril Leung
FedML
21
79
0
02 Nov 2021
Federated Learning with Heterogeneous Differential Privacy
Nasser Aldaghri
Hessam Mahdavifar
Ahmad Beirami
FedML
32
2
0
28 Oct 2021
Efficient and Private Federated Learning with Partially Trainable Networks
Hakim Sidahmed
Zheng Xu
Ankush Garg
Yuan Cao
Mingqing Chen
FedML
49
13
0
06 Oct 2021
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
112
44
0
28 Sep 2021
Previous
1
2
3
4
Next