ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13347
  4. Cited By
MDA for random forests: inconsistency, and a practical solution via the
  Sobol-MDA

MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA

26 February 2021
Clément Bénard
Sébastien Da Veiga
Erwan Scornet
ArXivPDFHTML

Papers citing "MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA"

13 / 13 papers shown
Title
MDI+: A Flexible Random Forest-Based Feature Importance Framework
MDI+: A Flexible Random Forest-Based Feature Importance Framework
Abhineet Agarwal
Ana M. Kenney
Yan Shuo Tan
Tiffany M. Tang
Bin-Xia Yu
38
11
0
04 Jul 2023
Feature Importance: A Closer Look at Shapley Values and LOCO
Feature Importance: A Closer Look at Shapley Values and LOCO
I. Verdinelli
Larry A. Wasserman
FAtt
TDI
29
20
0
10 Mar 2023
Shapley Curves: A Smoothing Perspective
Shapley Curves: A Smoothing Perspective
Ratmir Miftachov
Georg Keilbar
Wolfgang Karl Härdle
FAtt
30
1
0
23 Nov 2022
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
26
0
0
29 Sep 2022
Quantile-constrained Wasserstein projections for robust interpretability
  of numerical and machine learning models
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
35
2
0
23 Sep 2022
FACT: High-Dimensional Random Forests Inference
FACT: High-Dimensional Random Forests Inference
Chien-Ming Chi
Yingying Fan
Jinchi Lv
29
2
0
04 Jul 2022
Fast Interpretable Greedy-Tree Sums
Fast Interpretable Greedy-Tree Sums
Yan Shuo Tan
Chandan Singh
Keyan Nasseri
Abhineet Agarwal
James Duncan
Omer Ronen
M. Epland
Aaron E. Kornblith
Bin-Xia Yu
AI4CE
21
6
0
28 Jan 2022
Consistent Sufficient Explanations and Minimal Local Rules for
  explaining regression and classification models
Consistent Sufficient Explanations and Minimal Local Rules for explaining regression and classification models
Salim I. Amoukou
Nicolas Brunel
FAtt
LRM
20
5
0
08 Nov 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
24
32
0
25 May 2021
Unbiased variable importance for random forests
Unbiased variable importance for random forests
Markus Loecher
FAtt
43
53
0
04 Mar 2020
Trees, forests, and impurity-based variable importance
Trees, forests, and impurity-based variable importance
Erwan Scornet
FAtt
31
75
0
13 Jan 2020
Unrestricted Permutation forces Extrapolation: Variable Importance
  Requires at least One More Model, or There Is No Free Variable Importance
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
35
153
0
01 May 2019
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
93
2,731
0
18 Aug 2015
1