ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13177
97
44

Efficient and Interpretable Robot Manipulation with Graph Neural Networks

25 February 2021
Yixin Lin
Austin S. Wang
Eric Undersander
Akshara Rai
    LM&Ro
ArXivPDFHTML
Abstract

Manipulation tasks, like loading a dishwasher, can be seen as a sequence of spatial constraints and relationships between different objects. We aim to discover these rules from demonstrations by posing manipulation as a classification problem over a graph, whose nodes represent task-relevant entities like objects and goals, and present a graph neural network (GNN) policy architecture for solving this problem from demonstrations. In our experiments, a single GNN policy trained using imitation learning (IL) on 20 expert demos can solve blockstacking, rearrangement, and dishwasher loading tasks; once the policy has learned the spatial structure, it can generalize to a larger number of objects, goal configurations, and from simulation to the real world. These experiments show that graphical IL can solve complex long-horizon manipulation problems without requiring detailed task descriptions. Videos can be found at: https://youtu.be/POxaTDAj7aY.

View on arXiv
Comments on this paper