ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13152
  4. Cited By
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency

Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency

25 February 2021
Yuyang Deng
M. Mahdavi
ArXivPDFHTML

Papers citing "Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency"

37 / 37 papers shown
Title
A stochastic smoothing framework for nonconvex-nonconcave min-sum-max problems with applications to Wasserstein distributionally robust optimization
A stochastic smoothing framework for nonconvex-nonconcave min-sum-max problems with applications to Wasserstein distributionally robust optimization
Wei Liu
Muhammad Khan
Gabriel Mancino-Ball
Yangyang Xu
37
0
0
24 Feb 2025
GP-FL: Model-Based Hessian Estimation for Second-Order Over-the-Air
  Federated Learning
GP-FL: Model-Based Hessian Estimation for Second-Order Over-the-Air Federated Learning
Shayan Mohajer Hamidi
Ali Bereyhi
S. Asaad
H. Vincent Poor
67
1
0
05 Dec 2024
Achieving Near-Optimal Convergence for Distributed Minimax Optimization
  with Adaptive Stepsizes
Achieving Near-Optimal Convergence for Distributed Minimax Optimization with Adaptive Stepsizes
Yan Huang
Xiang Li
Yipeng Shen
Niao He
Jinming Xu
33
1
0
05 Jun 2024
Near-Optimal Distributed Minimax Optimization under the Second-Order
  Similarity
Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity
Qihao Zhou
Haishan Ye
Luo Luo
24
0
0
25 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
30
3
0
02 May 2024
Stochastic Smoothed Gradient Descent Ascent for Federated Minimax
  Optimization
Stochastic Smoothed Gradient Descent Ascent for Federated Minimax Optimization
Wei Shen
Minhui Huang
Jiawei Zhang
Cong Shen
FedML
33
0
0
02 Nov 2023
Solving a Class of Non-Convex Minimax Optimization in Federated Learning
Solving a Class of Non-Convex Minimax Optimization in Federated Learning
Xidong Wu
Jianhui Sun
Zhengmian Hu
Aidong Zhang
Heng-Chiao Huang
FedML
97
10
0
05 Oct 2023
Distributed Dual Coordinate Ascent with Imbalanced Data on a General
  Tree Network
Distributed Dual Coordinate Ascent with Imbalanced Data on a General Tree Network
Myung Cho
Lifeng Lai
Weiyu Xu
14
1
0
28 Aug 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed
  Variational Inequalities: Unified Analysis and Local Updates
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
24
0
0
02 Jun 2023
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
  Problems
Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax Problems
Feihu Huang
Songcan Chen
13
5
0
21 Apr 2023
Federated Compositional Deep AUC Maximization
Federated Compositional Deep AUC Maximization
Xinwen Zhang
Yihang Zhang
Tianbao Yang
Richard Souvenir
Hongchang Gao
FedML
20
7
0
20 Apr 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient
  Communications for Distributed Variational Inequalities
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
Federated Minimax Optimization with Client Heterogeneity
Federated Minimax Optimization with Client Heterogeneity
Pranay Sharma
Rohan Panda
Gauri Joshi
FedML
30
9
0
08 Feb 2023
Global Nash Equilibrium in Non-convex Multi-player Game: Theory and
  Algorithms
Global Nash Equilibrium in Non-convex Multi-player Game: Theory and Algorithms
Guanpu Chen
Gehui Xu
Fengxiang He
Yiguang Hong
Leszek Rutkowski
Dacheng Tao
16
5
0
19 Jan 2023
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax
  Problems
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
16
16
0
06 Dec 2022
Adaptive Federated Minimax Optimization with Lower Complexities
Adaptive Federated Minimax Optimization with Lower Complexities
Feihu Huang
Xinrui Wang
Junyi Li
Songcan Chen
FedML
11
5
0
14 Nov 2022
Faster Adaptive Momentum-Based Federated Methods for Distributed
  Composition Optimization
Faster Adaptive Momentum-Based Federated Methods for Distributed Composition Optimization
Feihu Huang
FedML
20
1
0
03 Nov 2022
Fast Adaptive Federated Bilevel Optimization
Fast Adaptive Federated Bilevel Optimization
Feihu Huang
FedML
20
7
0
02 Nov 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
SAGDA: Achieving $\mathcal{O}(ε^{-2})$ Communication Complexity
  in Federated Min-Max Learning
SAGDA: Achieving O(ε−2)\mathcal{O}(ε^{-2})O(ε−2) Communication Complexity in Federated Min-Max Learning
Haibo Yang
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
FedML
28
0
0
02 Oct 2022
An Optimal Transport Approach to Personalized Federated Learning
An Optimal Transport Approach to Personalized Federated Learning
Farzan Farnia
Amirhossein Reisizadeh
Ramtin Pedarsani
Ali Jadbabaie
OT
OOD
FedML
29
12
0
06 Jun 2022
A Communication-efficient Algorithm with Linear Convergence for
  Federated Minimax Learning
A Communication-efficient Algorithm with Linear Convergence for Federated Minimax Learning
Zhenyu Sun
Ermin Wei
FedML
17
14
0
02 Jun 2022
FRAug: Tackling Federated Learning with Non-IID Features via
  Representation Augmentation
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation
Haokun Chen
A. Frikha
Denis Krompass
Jindong Gu
Volker Tresp
OOD
30
24
0
30 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
40
73
0
04 May 2022
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
46
0
09 Mar 2022
Provably Efficient Convergence of Primal-Dual Actor-Critic with
  Nonlinear Function Approximation
Provably Efficient Convergence of Primal-Dual Actor-Critic with Nonlinear Function Approximation
Jing Dong
Li Shen
Ying Xu
Baoxiang Wang
16
1
0
28 Feb 2022
Distributed saddle point problems for strongly concave-convex functions
Distributed saddle point problems for strongly concave-convex functions
Muhammad I. Qureshi
U. Khan
31
12
0
11 Feb 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain
  Adaptation
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation
Yan Shen
Jianguo Du
Hao Zhang
Benyu Zhang
Zhanghexuan Ji
Mingchen Gao
FedML
29
13
0
16 Oct 2021
Distributed Methods with Compressed Communication for Solving
  Variational Inequalities, with Theoretical Guarantees
Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Aleksandr Beznosikov
Peter Richtárik
Michael Diskin
Max Ryabinin
Alexander Gasnikov
FedML
15
20
0
07 Oct 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in
  Federated Learning
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
30
14
0
16 Aug 2021
Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Optimization
Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Optimization
Luofeng Liao
Li Shen
Jia Duan
Mladen Kolar
Dacheng Tao
13
4
0
18 Jun 2021
Decentralized Local Stochastic Extra-Gradient for Variational
  Inequalities
Decentralized Local Stochastic Extra-Gradient for Variational Inequalities
Aleksandr Beznosikov
Pavel Dvurechensky
Anastasia Koloskova
V. Samokhin
Sebastian U. Stich
Alexander Gasnikov
24
43
0
15 Jun 2021
CDMA: A Practical Cross-Device Federated Learning Algorithm for General
  Minimax Problems
CDMA: A Practical Cross-Device Federated Learning Algorithm for General Minimax Problems
Jiahao Xie
Chao Zhang
Zebang Shen
Weijie Liu
Hui Qian
FedML
18
1
0
29 May 2021
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
31
100
0
16 Oct 2019
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
53
120
0
05 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
1