ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13025
  4. Cited By
Multifidelity Ensemble Kalman Filtering Using Surrogate Models Defined
  by Physics-Informed Autoencoders

Multifidelity Ensemble Kalman Filtering Using Surrogate Models Defined by Physics-Informed Autoencoders

25 February 2021
Andrey A. Popov
Adrian Sandu
    AI4CE
ArXivPDFHTML

Papers citing "Multifidelity Ensemble Kalman Filtering Using Surrogate Models Defined by Physics-Informed Autoencoders"

3 / 3 papers shown
Title
A Meta-learning Formulation of the Autoencoder Problem for Non-linear
  Dimensionality Reduction
A Meta-learning Formulation of the Autoencoder Problem for Non-linear Dimensionality Reduction
Andrey A. Popov
A. Sarshar
Austin Chennault
Adrian Sandu
17
2
0
14 Jul 2022
Adjoint-Matching Neural Network Surrogates for Fast 4D-Var Data
  Assimilation
Adjoint-Matching Neural Network Surrogates for Fast 4D-Var Data Assimilation
Austin Chennault
Andrey A. Popov
Amit N. Subrahmanya
R. Cooper
Ali Haisam Muhammad Rafid
Anuj Karpatne
Adrian Sandu
31
10
0
16 Nov 2021
Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic
  Equations through a Physics-Informed Convolutional Autoencoder
Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic Equations through a Physics-Informed Convolutional Autoencoder
R. Cooper
Andrey A. Popov
Adrian Sandu
23
4
0
27 Aug 2021
1