Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.12905
Cited By
Tuning as a Means of Assessing the Benefits of New Ideas in Interplay with Existing Algorithmic Modules
25 February 2021
Jacob De Nobel
Diederick Vermetten
Hao Wang
Carola Doerr
Thomas Bäck
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tuning as a Means of Assessing the Benefits of New Ideas in Interplay with Existing Algorithmic Modules"
9 / 9 papers shown
Title
An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise
Catalin-Viorel Dinu
Yash J. Patel
X. Bonet-Monroig
Hao Wang
45
0
0
25 Sep 2024
LLaMEA: A Large Language Model Evolutionary Algorithm for Automatically Generating Metaheuristics
Niki van Stein
Thomas Bäck
59
17
0
30 May 2024
Evolving the Structure of Evolution Strategies
Sander van Rijn
Hao Wang
M. Leeuwen
Thomas Bäck
61
56
0
17 Oct 2016
The CMA Evolution Strategy: A Tutorial
N. Hansen
64
1,372
0
04 Apr 2016
COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting
N. Hansen
A. Auger
Raymond Ros
Olaf Mersmann
Tea Tušar
D. Brockhoff
55
424
0
29 Mar 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
222
2,325
0
21 Mar 2016
A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization
I. Loshchilov
ODL
52
88
0
21 Apr 2014
SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization
Thomas Bartz-Beielstein
89
54
0
23 Jun 2010
CMA-ES with Two-Point Step-Size Adaptation
Nikolaus Hansen
105
575
0
02 May 2008
1