ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12827
  4. Cited By
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints

Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints

25 February 2021
Maura Pintor
Fabio Roli
Wieland Brendel
Battista Biggio
    AAML
ArXivPDFHTML

Papers citing "Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints"

42 / 42 papers shown
Title
Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent
Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent
Philip Doldo
Derek Everett
Amol Khanna
A. Nguyen
Edward Raff
AAML
46
0
0
25 Mar 2025
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
João B. S. Carvalho
Alessandro Torcinovich
Victor Jimenez Rodriguez
Antonio Emanuele Cinà
Carlos Cotrini
Lea Schönherr
J. M. Buhmann
OOD
68
0
0
20 Mar 2025
Task-Agnostic Attacks Against Vision Foundation Models
Brian Pulfer
Yury Belousov
Vitaliy Kinakh
Teddy Furon
S. Voloshynovskiy
AAML
77
0
0
05 Mar 2025
Segment-Anything Models Achieve Zero-shot Robustness in Autonomous
  Driving
Segment-Anything Models Achieve Zero-shot Robustness in Autonomous Driving
Jun Yan
Pengyu Wang
Danni Wang
Weiquan Huang
Daniel Watzenig
Huilin Yin
AAML
VLM
28
3
0
19 Aug 2024
Towards Robust Vision Transformer via Masked Adaptive Ensemble
Towards Robust Vision Transformer via Masked Adaptive Ensemble
Fudong Lin
Jiadong Lou
Xu Yuan
Nianfeng Tzeng
ViT
AAML
36
1
0
22 Jul 2024
HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
Raffaele Mura
Giuseppe Floris
Luca Scionis
Giorgio Piras
Maura Pintor
Ambra Demontis
Giorgio Giacinto
Battista Biggio
Fabio Roli
AAML
58
0
0
11 Jul 2024
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Luca Demetrio
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
44
8
0
30 Apr 2024
A mean curvature flow arising in adversarial training
A mean curvature flow arising in adversarial training
Leon Bungert
Tim Laux
Kerrek Stinson
AAML
32
3
0
22 Apr 2024
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A
  Survey
Out-of-Distribution Data: An Acquaintance of Adversarial Examples -- A Survey
Naveen Karunanayake
Ravin Gunawardena
Suranga Seneviratne
Sanjay Chawla
OOD
51
5
0
08 Apr 2024
Minimum Topology Attacks for Graph Neural Networks
Minimum Topology Attacks for Graph Neural Networks
Mengmei Zhang
Tianlin Li
Chuan Shi
Lingjuan Lyu
Tianchi Yang
Junping Du
AAML
38
7
0
05 Mar 2024
Robustness-Congruent Adversarial Training for Secure Machine Learning
  Model Updates
Robustness-Congruent Adversarial Training for Secure Machine Learning Model Updates
Daniele Angioni
Luca Demetrio
Maura Pintor
Luca Oneto
Davide Anguita
Battista Biggio
Fabio Roli
AAML
35
2
0
27 Feb 2024
Improving Fast Minimum-Norm Attacks with Hyperparameter Optimization
Improving Fast Minimum-Norm Attacks with Hyperparameter Optimization
Giuseppe Floris
Raffaele Mura
Luca Scionis
Giorgio Piras
Maura Pintor
Ambra Demontis
Battista Biggio
AAML
37
4
0
12 Oct 2023
Samples on Thin Ice: Re-Evaluating Adversarial Pruning of Neural
  Networks
Samples on Thin Ice: Re-Evaluating Adversarial Pruning of Neural Networks
Giorgio Piras
Maura Pintor
Ambra Demontis
Battista Biggio
AAML
28
1
0
12 Oct 2023
A Review of Adversarial Attacks in Computer Vision
A Review of Adversarial Attacks in Computer Vision
Yutong Zhang
Yao Li
Yin Li
Zhichang Guo
AAML
23
3
0
15 Aug 2023
FLIRT: Feedback Loop In-context Red Teaming
FLIRT: Feedback Loop In-context Red Teaming
Ninareh Mehrabi
Palash Goyal
Christophe Dupuy
Qian Hu
Shalini Ghosh
R. Zemel
Kai-Wei Chang
Aram Galstyan
Rahul Gupta
DiffM
26
55
0
08 Aug 2023
Vulnerability-Aware Instance Reweighting For Adversarial Training
Vulnerability-Aware Instance Reweighting For Adversarial Training
Olukorede Fakorede
Ashutosh Nirala
Modeste Atsague
Jin Tian
AAML
19
2
0
14 Jul 2023
How to choose your best allies for a transferable attack?
How to choose your best allies for a transferable attack?
Thibault Maho
Seyed-Mohsen Moosavi-Dezfooli
Teddy Furon
AAML
29
1
0
05 Apr 2023
Optimization and Optimizers for Adversarial Robustness
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
28
5
0
23 Mar 2023
Decentralized Adversarial Training over Graphs
Decentralized Adversarial Training over Graphs
Ying Cao
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
AAML
43
1
0
23 Mar 2023
Revisiting DeepFool: generalization and improvement
Revisiting DeepFool: generalization and improvement
Alireza Abdollahpourrostam
Mahed Abroshan
Seyed-Mohsen Moosavi-Dezfooli
AAML
29
2
0
22 Mar 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
Robust Evaluation of Diffusion-Based Adversarial Purification
M. Lee
Dongwoo Kim
34
54
0
16 Mar 2023
Measuring Equality in Machine Learning Security Defenses: A Case Study
  in Speech Recognition
Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition
Luke E. Richards
Edward Raff
Cynthia Matuszek
AAML
16
2
0
17 Feb 2023
ExploreADV: Towards exploratory attack for Neural Networks
ExploreADV: Towards exploratory attack for Neural Networks
Tianzuo Luo
Yuyi Zhong
S. Khoo
AAML
24
1
0
01 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
NCVX: A General-Purpose Optimization Solver for Constrained Machine and
  Deep Learning
NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning
Buyun Liang
Tim Mitchell
Ju Sun
OOD
18
7
0
03 Oct 2022
Optimization for Robustness Evaluation beyond $\ell_p$ Metrics
Optimization for Robustness Evaluation beyond ℓp\ell_pℓp​ Metrics
Hengyue Liang
Buyun Liang
Ying Cui
Tim Mitchell
Ju Sun
AAML
21
3
0
02 Oct 2022
Robust-by-Design Classification via Unitary-Gradient Neural Networks
Robust-by-Design Classification via Unitary-Gradient Neural Networks
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
42
5
0
09 Sep 2022
Proximal Splitting Adversarial Attacks for Semantic Segmentation
Proximal Splitting Adversarial Attacks for Semantic Segmentation
Jérôme Rony
J. Pesquet
Ismail Ben Ayed
AAML
17
20
0
14 Jun 2022
Improving Robustness against Real-World and Worst-Case Distribution
  Shifts through Decision Region Quantification
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
Leo Schwinn
Leon Bungert
A. Nguyen
René Raab
Falk Pulsmeyer
Doina Precup
Björn Eskofier
Dario Zanca
OOD
56
13
0
19 May 2022
On Trace of PGD-Like Adversarial Attacks
On Trace of PGD-Like Adversarial Attacks
Mo Zhou
Vishal M. Patel
AAML
27
4
0
19 May 2022
Neuro-Inspired Deep Neural Networks with Sparse, Strong Activations
Neuro-Inspired Deep Neural Networks with Sparse, Strong Activations
Metehan Cekic
Can Bakiskan
Upamanyu Madhow
9
7
0
26 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
30
119
0
21 Feb 2022
On the Minimal Adversarial Perturbation for Deep Neural Networks with
  Provable Estimation Error
On the Minimal Adversarial Perturbation for Deep Neural Networks with Provable Estimation Error
Fabio Brau
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
24
7
0
04 Jan 2022
Where to Look: A Unified Attention Model for Visual Recognition with
  Reinforcement Learning
Where to Look: A Unified Attention Model for Visual Recognition with Reinforcement Learning
Gang Chen
16
3
0
13 Nov 2021
EG-Booster: Explanation-Guided Booster of ML Evasion Attacks
EG-Booster: Explanation-Guided Booster of ML Evasion Attacks
Abderrahmen Amich
Birhanu Eshete
AAML
8
8
0
31 Aug 2021
Indicators of Attack Failure: Debugging and Improving Optimization of
  Adversarial Examples
Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples
Maura Pintor
Luca Demetrio
Angelo Sotgiu
Ambra Demontis
Nicholas Carlini
Battista Biggio
Fabio Roli
AAML
25
28
0
18 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance
  Adversarial Attacks
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Internal Wasserstein Distance for Adversarial Attack and Defense
Internal Wasserstein Distance for Adversarial Attack and Defense
Jincheng Li
Shuhai Zhang
Jingyun Liang
Jian Chen
Mingkui Tan
Yang Xiang
AAML
24
4
0
13 Mar 2021
Augmented Lagrangian Adversarial Attacks
Augmented Lagrangian Adversarial Attacks
Jérôme Rony
Eric Granger
M. Pedersoli
Ismail Ben Ayed
AAML
8
38
0
24 Nov 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
678
0
19 Oct 2020
Sparse-RS: a versatile framework for query-efficient sparse black-box
  adversarial attacks
Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks
Francesco Croce
Maksym Andriushchenko
Naman D. Singh
Nicolas Flammarion
Matthias Hein
20
99
0
23 Jun 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
1