ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12182
  4. Cited By
Parameterized Temperature Scaling for Boosting the Expressive Power in
  Post-Hoc Uncertainty Calibration

Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration

24 February 2021
Christian Tomani
Daniel Cremers
Florian Buettner
    UQCV
ArXivPDFHTML

Papers citing "Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration"

10 / 10 papers shown
Title
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
D. Wolf
Alexander Braun
Markus Ulrich
89
0
0
18 Dec 2024
Decoupling of neural network calibration measures
Decoupling of neural network calibration measures
D. Wolf
Prasannavenkatesh Balaji
Alexander Braun
Markus Ulrich
UQCV
44
3
0
04 Jun 2024
Optimizing Calibration by Gaining Aware of Prediction Correctness
Optimizing Calibration by Gaining Aware of Prediction Correctness
Yuchi Liu
Lei Wang
Yuli Zou
James Zou
Liang Zheng
UQCV
44
1
0
19 Apr 2024
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Yasushi Esaki
Akihiro Nakamura
Keisuke Kawano
Ryoko Tokuhisa
Takuro Kutsuna
46
0
0
21 Feb 2024
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved
  Calibration and Model Selection in Unsupervised Domain Adaptation
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
43
1
0
16 Oct 2023
Scaling of Class-wise Training Losses for Post-hoc Calibration
Scaling of Class-wise Training Losses for Post-hoc Calibration
Seungjin Jung
Seung-Woo Seo
Yonghyun Jeong
Jongwon Choi
37
3
0
19 Jun 2023
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Christian Tomani
Futa Waseda
Yuesong Shen
Daniel Cremers
UQCV
34
4
0
10 Feb 2023
Uncertainty Estimation based on Geometric Separation
Uncertainty Estimation based on Geometric Separation
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
33
0
0
11 Jan 2023
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
35
13
0
31 Jul 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
1